हिंदी

If Log √ X 2 + Y 2 = Tan − 1 ( Y X ) Prove that D Y D X = X + Y X − Y ? - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\log \sqrt{x^2 + y^2} = \tan^{- 1} \left( \frac{y}{x} \right)\] Prove that \[\frac{dy}{dx} = \frac{x + y}{x - y}\] ?

उत्तर

\[\text{ We have }, \log\sqrt{x^2 + y^2} = \tan^{- 1} \left( \frac{x}{y} \right)\]

\[ \Rightarrow \log \left( x^2 + y^2 \right)^\frac{1}{2} = \tan^{- 1} \left( \frac{y}{x} \right)\]

\[ \Rightarrow \frac{1}{2}\log\left( x^2 + y^2 \right) = \tan^{- 1} \left( \frac{y}{x} \right)\]

Differentiate with respect to x, we get,

\[\Rightarrow \frac{1}{2}\frac{d}{dx}\log\left( x^2 + y^2 \right) = \frac{d}{dx} \tan^{- 1} \left( \frac{y}{x} \right)\]

\[ \Rightarrow \frac{1}{2}\left( \frac{1}{x^2 + y^2} \right)\frac{d}{dx}\left( x^2 + y^2 \right) = \frac{1}{1 + \left( \frac{y}{x} \right)^2}\frac{d}{dx}\left( \frac{y}{x} \right)\]

\[ \Rightarrow \frac{1}{2}\left( \frac{1}{x^2 + y^2} \right)\left[ 2x + 2y\frac{d y}{d x} \right] = \frac{x^2}{\left( x^2 + y^2 \right)}\left[ \frac{x\frac{d y}{d x} - y\frac{d}{dx}\left( x \right)}{x^2} \right]\]

\[ \Rightarrow \left( \frac{1}{x^2 + y^2} \right)\left( x + y\frac{d y}{d x} \right) = \frac{x^2}{\left( x^2 + y^2 \right)}\left[ \frac{x\frac{d y}{d x} - y\frac{d}{dx}\left( x \right)}{x^2} \right]\]

\[ \Rightarrow \left( \frac{1}{x^2 + y^2} \right)\left( x + y\frac{d y}{d x} \right) = \frac{x^2}{\left( x^2 + y^2 \right)}\left[ \frac{x\frac{d y}{d x} - y\left( 1 \right)}{x^2} \right]\]

\[ \Rightarrow x + y\frac{d y}{d x} = x\frac{d y}{d x} - y\]

\[ \Rightarrow y\frac{d y}{d x} - x\frac{d y}{d x} = - y - x\]

\[ \Rightarrow \frac{d y}{d x}\left( y - x \right) = - \left( y + x \right)\]

\[ \Rightarrow \frac{d y}{d x} = \frac{- \left( y + x \right)}{y - x}\]

\[ \Rightarrow \frac{d y}{d x} = \frac{x + y}{x - y}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Differentiation - Exercise 11.04 [पृष्ठ ७५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 11 Differentiation
Exercise 11.04 | Q 17 | पृष्ठ ७५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Differentiate the following functions from first principles log cos x ?


Differentiate etan x ?


Differentiate `2^(x^3)` ?


Differentiate (log sin x)?


Differentiate \[\log \sqrt{\frac{1 - \cos x}{1 + \cos x}}\] ?


Differentiate \[\sin \left( 2 \sin^{- 1} x \right)\] ?


If \[y = \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}\] ,  prove that \[\left( 1 - x^2 \right) \frac{dy}{dx} = x + \frac{y}{x}\] ?


If \[y = \sqrt{a^2 - x^2}\] prove that  \[y\frac{dy}{dx} + x = 0\] ?


Differentiate \[\sin^{- 1} \left\{ \frac{\sin x + \cos x}{\sqrt{2}} \right\}, - \frac{3 \pi}{4} < x < \frac{\pi}{4}\] ?


Differentiate \[\tan^{- 1} \left( \frac{2 a^x}{1 - a^{2x}} \right), a > 1, - \infty < x < 0\] ?


Differentiate \[\tan^{- 1} \left( \frac{a + bx}{b - ax} \right)\] ?


If \[y = \tan^{- 1} \left( \frac{\sqrt{1 + x} - \sqrt{1 - x}}{\sqrt{1 + x} + \sqrt{1 - x}} \right), \text{find } \frac{dy}{dx}\] ?


Find  \[\frac{dy}{dx}\] in the following case  \[x^{2/3} + y^{2/3} = a^{2/3}\] ?

 


Find  \[\frac{dy}{dx}\] in the following case \[\left( x + y \right)^2 = 2axy\] ?

 


If \[y = x \sin y\] , Prove that \[\frac{dy}{dx} = \frac{\sin y}{\left( 1 - x \cos y \right)}\] ?


Differentiate \[x^{\sin x}\]  ?


Differentiate \[\left( \log x \right)^{ \log x }\] ?


Differentiate  \[x^{x \cos x +} \frac{x^2 + 1}{x^2 - 1}\]  ?


If \[x^x + y^x = 1\], prove that \[\frac{dy}{dx} = - \left\{ \frac{x^x \left( 1 + \log x \right) + y^x \cdot \log y}{x \cdot y^\left( x - 1 \right)} \right\}\] ?


Find the derivative of the function f (x) given by  \[f\left( x \right) = \left( 1 + x \right) \left( 1 + x^2 \right) \left( 1 + x^4 \right) \left( 1 + x^8 \right)\] and hence find `f' (1)` ?

 


If \[y = \left( \sin x - \cos x \right)^{\sin x - \cos x} , \frac{\pi}{4} < x < \frac{3\pi}{4}, \text{ find} \frac{dy}{dx}\] ?


If  \[y = \sqrt{\tan x + \sqrt{\tan x + \sqrt{\tan x + . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sec^2 x}{2 y - 1}\] ?

 


Find  \[\frac{dy}{dx}\] , when  \[x = \frac{1 - t^2}{1 + t^2} \text{ and y } = \frac{2 t}{1 + t^2}\] ?

 


Differentiate x2 with respect to x3


Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to  \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( \frac{1}{\sqrt{2}}, 1 \right)\] ?


If \[y = \log_a x, \text{ find } \frac{dy}{dx} \] ? 


The derivative of \[\sec^{- 1} \left( \frac{1}{2 x^2 + 1} \right) \text { w . r . t }. \sqrt{1 + 3 x} \text { at } x = - 1/3\]


If \[y = \log \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] __________ .


Find the second order derivatives of the following function x3 log ?


Find the second order derivatives of the following function  log (log x)  ?


If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \cdot \frac{dy}{dx} + y \cos^2 x = 0\] ?


If y = (tan−1 x)2, then prove that (1 + x2)2 y2 + 2x(1 + x2)y1 = 2 ?


If y = a xn + 1 + bxn and \[x^2 \frac{d^2 y}{d x^2} = \lambda y\]  then write the value of λ ?


If x = 2aty = at2, where a is a constant, then find \[\frac{d^2 y}{d x^2} \text { at }x = \frac{1}{2}\] ?


If y = a + bx2, a, b arbitrary constants, then

 


If xy − loge y = 1 satisfies the equation \[x\left( y y_2 + y_1^2 \right) - y_2 + \lambda y y_1 = 0\]

 


Find the minimum value of (ax + by), where xy = c2.


If y = xx, prove that \[\frac{d^2 y}{d x^2} - \frac{1}{y} \left( \frac{dy}{dx} \right)^2 - \frac{y}{x} = 0 .\]


Find the height of a cylinder, which is open at the top, having a given surface area, greatest volume, and radius r.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×