Advertisements
Advertisements
प्रश्न
If \[\log \sqrt{x^2 + y^2} = \tan^{- 1} \left( \frac{y}{x} \right)\] Prove that \[\frac{dy}{dx} = \frac{x + y}{x - y}\] ?
उत्तर
\[\text{ We have }, \log\sqrt{x^2 + y^2} = \tan^{- 1} \left( \frac{x}{y} \right)\]
\[ \Rightarrow \log \left( x^2 + y^2 \right)^\frac{1}{2} = \tan^{- 1} \left( \frac{y}{x} \right)\]
\[ \Rightarrow \frac{1}{2}\log\left( x^2 + y^2 \right) = \tan^{- 1} \left( \frac{y}{x} \right)\]
Differentiate with respect to x, we get,
\[\Rightarrow \frac{1}{2}\frac{d}{dx}\log\left( x^2 + y^2 \right) = \frac{d}{dx} \tan^{- 1} \left( \frac{y}{x} \right)\]
\[ \Rightarrow \frac{1}{2}\left( \frac{1}{x^2 + y^2} \right)\frac{d}{dx}\left( x^2 + y^2 \right) = \frac{1}{1 + \left( \frac{y}{x} \right)^2}\frac{d}{dx}\left( \frac{y}{x} \right)\]
\[ \Rightarrow \frac{1}{2}\left( \frac{1}{x^2 + y^2} \right)\left[ 2x + 2y\frac{d y}{d x} \right] = \frac{x^2}{\left( x^2 + y^2 \right)}\left[ \frac{x\frac{d y}{d x} - y\frac{d}{dx}\left( x \right)}{x^2} \right]\]
\[ \Rightarrow \left( \frac{1}{x^2 + y^2} \right)\left( x + y\frac{d y}{d x} \right) = \frac{x^2}{\left( x^2 + y^2 \right)}\left[ \frac{x\frac{d y}{d x} - y\frac{d}{dx}\left( x \right)}{x^2} \right]\]
\[ \Rightarrow \left( \frac{1}{x^2 + y^2} \right)\left( x + y\frac{d y}{d x} \right) = \frac{x^2}{\left( x^2 + y^2 \right)}\left[ \frac{x\frac{d y}{d x} - y\left( 1 \right)}{x^2} \right]\]
\[ \Rightarrow x + y\frac{d y}{d x} = x\frac{d y}{d x} - y\]
\[ \Rightarrow y\frac{d y}{d x} - x\frac{d y}{d x} = - y - x\]
\[ \Rightarrow \frac{d y}{d x}\left( y - x \right) = - \left( y + x \right)\]
\[ \Rightarrow \frac{d y}{d x} = \frac{- \left( y + x \right)}{y - x}\]
\[ \Rightarrow \frac{d y}{d x} = \frac{x + y}{x - y}\]
APPEARS IN
संबंधित प्रश्न
Differentiate the following functions from first principles log cos x ?
Differentiate etan x ?
Differentiate `2^(x^3)` ?
Differentiate (log sin x)2 ?
Differentiate \[\log \sqrt{\frac{1 - \cos x}{1 + \cos x}}\] ?
Differentiate \[\sin \left( 2 \sin^{- 1} x \right)\] ?
If \[y = \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}\] , prove that \[\left( 1 - x^2 \right) \frac{dy}{dx} = x + \frac{y}{x}\] ?
If \[y = \sqrt{a^2 - x^2}\] prove that \[y\frac{dy}{dx} + x = 0\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{\sin x + \cos x}{\sqrt{2}} \right\}, - \frac{3 \pi}{4} < x < \frac{\pi}{4}\] ?
Differentiate \[\tan^{- 1} \left( \frac{2 a^x}{1 - a^{2x}} \right), a > 1, - \infty < x < 0\] ?
Differentiate \[\tan^{- 1} \left( \frac{a + bx}{b - ax} \right)\] ?
If \[y = \tan^{- 1} \left( \frac{\sqrt{1 + x} - \sqrt{1 - x}}{\sqrt{1 + x} + \sqrt{1 - x}} \right), \text{find } \frac{dy}{dx}\] ?
Find \[\frac{dy}{dx}\] in the following case \[x^{2/3} + y^{2/3} = a^{2/3}\] ?
Find \[\frac{dy}{dx}\] in the following case \[\left( x + y \right)^2 = 2axy\] ?
If \[y = x \sin y\] , Prove that \[\frac{dy}{dx} = \frac{\sin y}{\left( 1 - x \cos y \right)}\] ?
Differentiate \[x^{\sin x}\] ?
Differentiate \[\left( \log x \right)^{ \log x }\] ?
Differentiate \[x^{x \cos x +} \frac{x^2 + 1}{x^2 - 1}\] ?
If \[x^x + y^x = 1\], prove that \[\frac{dy}{dx} = - \left\{ \frac{x^x \left( 1 + \log x \right) + y^x \cdot \log y}{x \cdot y^\left( x - 1 \right)} \right\}\] ?
Find the derivative of the function f (x) given by \[f\left( x \right) = \left( 1 + x \right) \left( 1 + x^2 \right) \left( 1 + x^4 \right) \left( 1 + x^8 \right)\] and hence find `f' (1)` ?
If \[y = \left( \sin x - \cos x \right)^{\sin x - \cos x} , \frac{\pi}{4} < x < \frac{3\pi}{4}, \text{ find} \frac{dy}{dx}\] ?
If \[y = \sqrt{\tan x + \sqrt{\tan x + \sqrt{\tan x + . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sec^2 x}{2 y - 1}\] ?
Find \[\frac{dy}{dx}\] , when \[x = \frac{1 - t^2}{1 + t^2} \text{ and y } = \frac{2 t}{1 + t^2}\] ?
Differentiate x2 with respect to x3
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( \frac{1}{\sqrt{2}}, 1 \right)\] ?
If \[y = \log_a x, \text{ find } \frac{dy}{dx} \] ?
The derivative of \[\sec^{- 1} \left( \frac{1}{2 x^2 + 1} \right) \text { w . r . t }. \sqrt{1 + 3 x} \text { at } x = - 1/3\]
If \[y = \log \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] __________ .
Find the second order derivatives of the following function x3 log x ?
Find the second order derivatives of the following function log (log x) ?
If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \cdot \frac{dy}{dx} + y \cos^2 x = 0\] ?
If y = (tan−1 x)2, then prove that (1 + x2)2 y2 + 2x(1 + x2)y1 = 2 ?
If y = a xn + 1 + bx−n and \[x^2 \frac{d^2 y}{d x^2} = \lambda y\] then write the value of λ ?
If x = 2at, y = at2, where a is a constant, then find \[\frac{d^2 y}{d x^2} \text { at }x = \frac{1}{2}\] ?
If y = a + bx2, a, b arbitrary constants, then
If xy − loge y = 1 satisfies the equation \[x\left( y y_2 + y_1^2 \right) - y_2 + \lambda y y_1 = 0\]
Find the minimum value of (ax + by), where xy = c2.
If y = xx, prove that \[\frac{d^2 y}{d x^2} - \frac{1}{y} \left( \frac{dy}{dx} \right)^2 - \frac{y}{x} = 0 .\]
Find the height of a cylinder, which is open at the top, having a given surface area, greatest volume, and radius r.