मराठी

If Log √ X 2 + Y 2 = Tan − 1 ( Y X ) Prove that D Y D X = X + Y X − Y ? - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\log \sqrt{x^2 + y^2} = \tan^{- 1} \left( \frac{y}{x} \right)\] Prove that \[\frac{dy}{dx} = \frac{x + y}{x - y}\] ?

उत्तर

\[\text{ We have }, \log\sqrt{x^2 + y^2} = \tan^{- 1} \left( \frac{x}{y} \right)\]

\[ \Rightarrow \log \left( x^2 + y^2 \right)^\frac{1}{2} = \tan^{- 1} \left( \frac{y}{x} \right)\]

\[ \Rightarrow \frac{1}{2}\log\left( x^2 + y^2 \right) = \tan^{- 1} \left( \frac{y}{x} \right)\]

Differentiate with respect to x, we get,

\[\Rightarrow \frac{1}{2}\frac{d}{dx}\log\left( x^2 + y^2 \right) = \frac{d}{dx} \tan^{- 1} \left( \frac{y}{x} \right)\]

\[ \Rightarrow \frac{1}{2}\left( \frac{1}{x^2 + y^2} \right)\frac{d}{dx}\left( x^2 + y^2 \right) = \frac{1}{1 + \left( \frac{y}{x} \right)^2}\frac{d}{dx}\left( \frac{y}{x} \right)\]

\[ \Rightarrow \frac{1}{2}\left( \frac{1}{x^2 + y^2} \right)\left[ 2x + 2y\frac{d y}{d x} \right] = \frac{x^2}{\left( x^2 + y^2 \right)}\left[ \frac{x\frac{d y}{d x} - y\frac{d}{dx}\left( x \right)}{x^2} \right]\]

\[ \Rightarrow \left( \frac{1}{x^2 + y^2} \right)\left( x + y\frac{d y}{d x} \right) = \frac{x^2}{\left( x^2 + y^2 \right)}\left[ \frac{x\frac{d y}{d x} - y\frac{d}{dx}\left( x \right)}{x^2} \right]\]

\[ \Rightarrow \left( \frac{1}{x^2 + y^2} \right)\left( x + y\frac{d y}{d x} \right) = \frac{x^2}{\left( x^2 + y^2 \right)}\left[ \frac{x\frac{d y}{d x} - y\left( 1 \right)}{x^2} \right]\]

\[ \Rightarrow x + y\frac{d y}{d x} = x\frac{d y}{d x} - y\]

\[ \Rightarrow y\frac{d y}{d x} - x\frac{d y}{d x} = - y - x\]

\[ \Rightarrow \frac{d y}{d x}\left( y - x \right) = - \left( y + x \right)\]

\[ \Rightarrow \frac{d y}{d x} = \frac{- \left( y + x \right)}{y - x}\]

\[ \Rightarrow \frac{d y}{d x} = \frac{x + y}{x - y}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Differentiation - Exercise 11.04 [पृष्ठ ७५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 11 Differentiation
Exercise 11.04 | Q 17 | पृष्ठ ७५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Differentiate \[e^{\tan 3 x} \] ?


Differentiate \[e^{\sin^{- 1} 2x}\] ?


If \[y = \sqrt{x^2 + a^2}\] prove that  \[y\frac{dy}{dx} - x = 0\] ?


Differentiate \[\sin^{- 1} \left( 1 - 2 x^2 \right), 0 < x < 1\] ?


Differentiate \[\tan^{- 1} \left( \frac{2^{x + 1}}{1 - 4^x} \right), - \infty < x < 0\] ?


Differentiate \[\sin^{- 1} \left\{ \frac{\sqrt{1 + x} + \sqrt{1 - x}}{2} \right\}, 0 < x < 1\] ?


Differentiate the following with respect to x

\[\cos^{- 1} \left( \sin x \right)\]


If the derivative of tan−1 (a + bx) takes the value 1 at x = 0, prove that 1 + a2 = b ?


If \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, - \frac{1}{2} < x < 0, \text{ find } \frac{dy}{dx} \] ?


If \[\tan^{- 1} \left( \frac{x^2 - y^2}{x^2 + y^2} \right) = a\] Prove that  \[\frac{dy}{dx} = \frac{x}{y}\frac{\left( 1 - \tan a \right)}{\left( 1 + \tan a \right)}\] ?


If \[y = x \sin \left( a + y \right)\] ,Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?


Differentiate \[\left( \sin x \right)^{\cos x}\] ?


Differentiate \[{10}^{ \log \sin x }\] ?


Differentiate  \[\sin \left( x^x \right)\] ?


Differentiate \[e^{\sin x }+ \left( \tan x \right)^x\] ?


Find  \[\frac{dy}{dx}\] \[y = e^{3x} \sin 4x \cdot 2^x\] ?

 


Find \[\frac{dy}{dx}\] \[y = x^{\log x }+ \left( \log x \right)^x\] ?


If \[x^x + y^x = 1\], prove that \[\frac{dy}{dx} = - \left\{ \frac{x^x \left( 1 + \log x \right) + y^x \cdot \log y}{x \cdot y^\left( x - 1 \right)} \right\}\] ?


If \[x^m y^n = 1\] , prove that \[\frac{dy}{dx} = - \frac{my}{nx}\] ?


If \[e^{x + y} - x = 0\] ,prove that \[\frac{dy}{dx} = \frac{1 - x}{x}\] ?


If \[y^x + x^y + x^x = a^b\] ,find \[\frac{dy}{dx}\] ?


\[\text{ If }\cos y = x\cos\left( a + y \right),\text{  where } \cos a \neq \pm 1, \text{ prove that } \frac{dy}{dx} = \frac{\cos^2 \left( a + y \right)}{\sin a}\] ?

Find \[\frac{dy}{dx}\], When \[x = a \left( \theta + \sin \theta \right) \text{ and } y = a \left( 1 - \cos \theta \right)\] ?


If  \[x = a\left( t + \frac{1}{t} \right) \text{ and y } = a\left( t - \frac{1}{t} \right)\] ,prove that  \[\frac{dy}{dx} = \frac{x}{y}\]?

 


If \[x = \left( t + \frac{1}{t} \right)^a , y = a^{t + \frac{1}{t}} , \text{ find } \frac{dy}{dx}\] ?


If  \[x = a\sin2t\left( 1 + \cos2t \right) \text { and y } = b\cos2t\left( 1 - \cos2t \right)\] , show that at  \[t = \frac{\pi}{4}, \frac{dy}{dx} = \frac{b}{a}\] ?


\[\sin x = \frac{2t}{1 + t^2}, \tan y = \frac{2t}{1 - t^2}, \text { find }  \frac{dy}{dx}\] ?

Differentiate \[\left( \cos x \right)^{\sin x }\] with respect to \[\left( \sin x \right)^{\cos x }\]?


If f (x) = loge (loge x), then write the value of `f' (e)` ?


If \[\pi \leq x \leq 2\pi \text { and y } = \cos^{- 1} \left( \cos x \right), \text { find } \frac{dy}{dx}\] ?


If \[f\left( x \right) = \log \left\{ \frac{u \left( x \right)}{v \left( x \right)} \right\}, u \left( 1 \right) = v \left( 1 \right) \text{ and }u' \left( 1 \right) = v' \left( 1 \right) = 2\] , then find the value of `f' (1)` ?


\[\frac{d}{dx} \left\{ \tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right) \right\} \text { equals }\] ______________ .


If \[f\left( x \right) = \sqrt{x^2 + 6x + 9}, \text { then } f'\left( x \right)\] is equal to ______________ .


If \[\sin y = x \cos \left( a + y \right), \text { then } \frac{dy}{dx}\] is equal to ______________ .


Find the second order derivatives of the following function x cos x ?


If \[y = e^{\tan^{- 1} x}\] prove that (1 + x2)y2 + (2x − 1)y1 = 0 ?


If y = cot x show that \[\frac{d^2 y}{d x^2} + 2y\frac{dy}{dx} = 0\] ?


If y = ae2x + be−x, show that, \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\] ?


Differentiate \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right) w . r . t . \sin^{- 1} \frac{2x}{1 + x^2},\]tan-11+x2-1x w.r.t. sin-12x1+x2, if x ∈ (–1, 1) .


f(x) = xx has a stationary point at ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×