Advertisements
Advertisements
प्रश्न
Differentiate \[\tan^{- 1} \left( \frac{2^{x + 1}}{1 - 4^x} \right), - \infty < x < 0\] ?
उत्तर
\[\text{ Let, y } = \tan^{- 1} \left\{ \frac{2^{x + 1}}{1 - 4^x} \right\}\]
\[\text{ put }2^x = \tan\theta\]
\[ y = \tan^{- 1} \left\{ \frac{2^x \times 2}{1 - \left( 2^x \right)^2} \right\}\]
\[ y = \tan^{- 1} \left( \frac{2 \tan\theta}{1 - \tan^2 \theta} \right) \]
\[ y = \tan^{- 1} \left( \tan2\theta \right) . . . \left( i \right)\]
\[\text{ Here }, - \infty < x < 0\]
\[ \Rightarrow 2^{- \infty} < 2^x < 2^\circ\]
\[ \Rightarrow 0 < 2^x < 1\]
\[ \Rightarrow 0 < \theta < \frac{\pi}{4}\]
\[ \Rightarrow 0 < 2\theta < \frac{\pi}{2}\]
\[\text{ So, from equation } \left( i \right), \]
\[ y = 2\theta ............\left[ \text{ Since }, \tan^{- 1} \left( \tan\theta \right) = \theta, \text{ if }\theta \in \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \right]\]
\[ y = 2 \tan^{- 1} \left( 2^x \right) \]
\[\text{ Differentiating it with respect to x} , \]
\[\frac{d y}{d x} = \frac{2}{1 + \left( 2^x \right)^2}\frac{d}{dx}\left( 2^x \right)\]
\[\frac{d y}{d x} = \frac{2 \times 2^x \log_e 2}{1 + 4^x}\]
\[\frac{d y}{d x} = \frac{2^{x + 1} \log_e 2}{1 + 4^x}\]
APPEARS IN
संबंधित प्रश्न
Differentiate the following functions from first principles ecos x.
Differentiate the following functions from first principles x2ex ?
Differentiate sin (3x + 5) ?
Differentiate log7 (2x − 3) ?
Differentiate \[3^{e^x}\] ?
Differentiate \[\log \sqrt{\frac{1 - \cos x}{1 + \cos x}}\] ?
Differentiate \[\log \left( cosec x - \cot x \right)\] ?
Differentiate \[\sin^2 \left\{ \log \left( 2x + 3 \right) \right\}\] ?
Differentiate \[\sin^{- 1} \left( \frac{x}{\sqrt{x^2 + a^2}} \right)\] ?
Differentiate \[\cos \left( \log x \right)^2\] ?
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\], prove that \[2 x\frac{dy}{dx} = \sqrt{x} - \frac{1}{\sqrt{x}}\] ?
Differentiate \[\sin^{- 1} \left( 2 x^2 - 1 \right), 0 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{a + x}{1 - ax} \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{x}{1 + 6 x^2} \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{5 x}{1 - 6 x^2} \right), - \frac{1}{\sqrt{6}} < x < \frac{1}{\sqrt{6}}\] ?
Find \[\frac{dy}{dx}\] in the following case \[\left( x^2 + y^2 \right)^2 = xy\] ?
If \[xy = 1\] prove that \[\frac{dy}{dx} + y^2 = 0\] ?
If \[x \sqrt{1 + y} + y \sqrt{1 + x} = 0\] , prove that \[\left( 1 + x \right)^2 \frac{dy}{dx} + 1 = 0\] ?
If \[y = x \sin \left( a + y \right)\] ,Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?
If \[\cos y = x \cos \left( a + y \right), \text{ with } \cos a \neq \pm 1, \text{ prove that } \frac{dy}{dx} = \frac{\cos^2 \left( a + y \right)}{\sin a}\] ?
Differentiate \[x^{\sin x}\] ?
Differentiate \[\left( \log x \right)^{\cos x}\] ?
Differentiate\[\left( x + \frac{1}{x} \right)^x + x^\left( 1 + \frac{1}{x} \right)\] ?
Find \[\frac{dy}{dx}\] \[y = e^{3x} \sin 4x \cdot 2^x\] ?
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( \frac{1}{\sqrt{2}}, 1 \right)\] ?
If \[y = \sec^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right)\] then write the value of \[\frac{dy}{dx} \] ?
If \[\left| x \right| < 1 \text{ and y} = 1 + x + x^2 + . . \] to ∞, then find the value of \[\frac{dy}{dx}\] ?
If x = a cos θ, y = b sin θ, show that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?
If y = (sin−1 x)2, prove that (1 − x2)
\[\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?
If x = 2 cos t − cos 2t, y = 2 sin t − sin 2t, find \[\frac{d^2 y}{d x^2}\text{ at } t = \frac{\pi}{2}\] ?
\[\text{ If x } = a\left( \cos t + \log \tan\frac{t}{2} \right) \text { and y } = a\left( \sin t \right), \text { evaluate } \frac{d^2 y}{d x^2} \text { at t } = \frac{\pi}{3} \] ?
\[\text { If y } = a \left\{ x + \sqrt{x^2 + 1} \right\}^n + b \left\{ x - \sqrt{x^2 + 1} \right\}^{- n} , \text { prove that }\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 \]
Disclaimer: There is a misprint in the question,
\[\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0\] must be written instead of
\[\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 \] ?
If \[y = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!}\] .....to ∞, then write \[\frac{d^2 y}{d x^2}\] in terms of y ?
If x = at2, y = 2 at, then \[\frac{d^2 y}{d x^2} =\]
If f(x) = (cos x + i sin x) (cos 2x + i sin 2x) (cos 3x + i sin 3x) ...... (cos nx + i sin nx) and f(1) = 1, then f'' (1) is equal to
If y = xn−1 log x then x2 y2 + (3 − 2n) xy1 is equal to