Advertisements
Advertisements
Question
Differentiate \[\tan^{- 1} \left( \frac{2^{x + 1}}{1 - 4^x} \right), - \infty < x < 0\] ?
Solution
\[\text{ Let, y } = \tan^{- 1} \left\{ \frac{2^{x + 1}}{1 - 4^x} \right\}\]
\[\text{ put }2^x = \tan\theta\]
\[ y = \tan^{- 1} \left\{ \frac{2^x \times 2}{1 - \left( 2^x \right)^2} \right\}\]
\[ y = \tan^{- 1} \left( \frac{2 \tan\theta}{1 - \tan^2 \theta} \right) \]
\[ y = \tan^{- 1} \left( \tan2\theta \right) . . . \left( i \right)\]
\[\text{ Here }, - \infty < x < 0\]
\[ \Rightarrow 2^{- \infty} < 2^x < 2^\circ\]
\[ \Rightarrow 0 < 2^x < 1\]
\[ \Rightarrow 0 < \theta < \frac{\pi}{4}\]
\[ \Rightarrow 0 < 2\theta < \frac{\pi}{2}\]
\[\text{ So, from equation } \left( i \right), \]
\[ y = 2\theta ............\left[ \text{ Since }, \tan^{- 1} \left( \tan\theta \right) = \theta, \text{ if }\theta \in \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \right]\]
\[ y = 2 \tan^{- 1} \left( 2^x \right) \]
\[\text{ Differentiating it with respect to x} , \]
\[\frac{d y}{d x} = \frac{2}{1 + \left( 2^x \right)^2}\frac{d}{dx}\left( 2^x \right)\]
\[\frac{d y}{d x} = \frac{2 \times 2^x \log_e 2}{1 + 4^x}\]
\[\frac{d y}{d x} = \frac{2^{x + 1} \log_e 2}{1 + 4^x}\]
APPEARS IN
RELATED QUESTIONS
Differentiate the following functions from first principles e−x.
Differentiate the following functions from first principles ecos x.
Differentiate the following functions from first principles sin−1 (2x + 3) ?
Differentiate sin2 (2x + 1) ?
Differentiate log7 (2x − 3) ?
Differentiate (log sin x)2 ?
Differentiate \[\frac{e^x \log x}{x^2}\] ?
Differentiate \[\frac{\sqrt{x^2 + 1} + \sqrt{x^2 - 1}}{\sqrt{x^2 + 1} - \sqrt{x^2 - 1}}\] ?
Differentiate \[\left( \sin^{- 1} x^4 \right)^4\] ?
Differentiate \[\frac{x^2 + 2}{\sqrt{\cos x}}\] ?
If \[y = \frac{x}{x + 2}\] , prove tha \[x\frac{dy}{dx} = \left( 1 - y \right) y\] ?
Differentiate \[\cos^{- 1} \left\{ 2x\sqrt{1 - x^2} \right\}, \frac{1}{\sqrt{2}} < x < 1\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{1 + \sqrt{1 - x^2}} \right\}, - 1 < x < 1\] ?
If \[y = \cot^{- 1} \left\{ \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} \right\}\], show that \[\frac{dy}{dx}\] is independent of x. ?
If the derivative of tan−1 (a + bx) takes the value 1 at x = 0, prove that 1 + a2 = b ?
If \[x y^2 = 1,\] prove that \[2\frac{dy}{dx} + y^3 = 0\] ?
Differentiate \[{10}^{ \log \sin x }\] ?
If \[y = x \sin \left( a + y \right)\] , prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?
If \[xy \log \left( x + y \right) = 1\] , prove that \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?
If \[y = \sqrt{\cos x + \sqrt{\cos x + \sqrt{\cos x + . . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sin x}{1 - 2 y}\] ?
If \[y = \sqrt{\log x + \sqrt{\log x + \sqrt{\log x + ... to \infty}}}\], prove that \[\left( 2 y - 1 \right) \frac{dy}{dx} = \frac{1}{x}\] ?
\[y = \left( \sin x \right)^{\left( \sin x \right)^{\left( \sin x \right)^{. . . \infty}}} \],prove that \[\frac{y^2 \cot x}{\left( 1 - y \log \sin x \right)}\] ?
Find \[\frac{dy}{dx}\] , when \[x = \frac{3 at}{1 + t^2}, \text{ and } y = \frac{3 a t^2}{1 + t^2}\] ?
If \[x = 2 \cos \theta - \cos 2 \theta \text{ and y} = 2 \sin \theta - \sin 2 \theta\], prove that \[\frac{dy}{dx} = \tan \left( \frac{3 \theta}{2} \right)\] ?
Write the derivative of sinx with respect to cos x ?
If \[f\left( 1 \right) = 4, f'\left( 1 \right) = 2\] find the value of the derivative of \[\log \left( f\left( e^x \right) \right)\] w.r. to x at the point x = 0 ?
The derivative of \[\sec^{- 1} \left( \frac{1}{2 x^2 + 1} \right) \text { w . r . t }. \sqrt{1 + 3 x} \text { at } x = - 1/3\]
If \[f\left( x \right) = \left| x^2 - 9x + 20 \right|\] then `f' (x)` is equal to ____________ .
If \[f\left( x \right) = \left| x - 3 \right| \text { and }g\left( x \right) = fof \left( x \right)\] is equal to __________ .
If \[\sqrt{1 - x^6} + \sqrt{1 - y^6} = a^3 \left( x^3 - y^3 \right)\] then \[\frac{dy}{dx}\] is equal to ____________ .
If \[\sin y = x \cos \left( a + y \right), \text { then } \frac{dy}{dx}\] is equal to ______________ .
Find the second order derivatives of the following function log (log x) ?
If y = log (sin x), prove that \[\frac{d^3 y}{d x^3} = 2 \cos \ x \ {cosec}^3 x\] ?
If log y = tan−1 x, show that (1 + x2)y2 + (2x − 1) y1 = 0 ?
If y = ae2x + be−x, show that, \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\] ?
\[\text { If x } = a \sin t - b \cos t, y = a \cos t + b \sin t, \text { prove that } \frac{d^2 y}{d x^2} = - \frac{x^2 + y^2}{y^3} \] ?
If y = (sin−1 x)2, then (1 − x2)y2 is equal to