English

Find D Y D X , When X = 3 a T 1 + T 2 , and Y = 3 a T 2 1 + T 2 ? - Mathematics

Advertisements
Advertisements

Question

Find \[\frac{dy}{dx}\] , when \[x = \frac{3 at}{1 + t^2}, \text{ and } y = \frac{3 a t^2}{1 + t^2}\] ?

Sum

Solution

\[\text{ We have, } x = \frac{3at}{1 + t^2}\]

Differentiating with respect to t,

\[\frac{dx}{dt} = \left[ \frac{\left( 1 + t^2 \right)\frac{d}{dt}\left( 3at \right) - 3at\frac{d}{dt}\left( 1 + t^2 \right)}{\left( 1 + t^2 \right)^2} \right] ............\left[\text{using quotient rule }\right]\]

\[ \Rightarrow \frac{dx}{dt} = \left[ \frac{\left( 1 + t^2 \right)\left( 3a \right) - 3at\left( 2t \right)}{\left( 1 + t^2 \right)^2} \right]\]

\[ \Rightarrow \frac{dx}{dt} = \left[ \frac{3a + 3a t^2 - 6a t^2}{\left( 1 + t^2 \right)^2} \right]\]

\[ \Rightarrow \frac{dx}{dt} = \left[ \frac{3a - 3a t^2}{\left( 1 - t^2 \right)^2} \right]\]

\[ \Rightarrow \frac{dx}{dt} = \frac{3a\left( 1 - t^2 \right)}{\left( 1 + t^2 \right)^2} . . . \left( i \right)\]

\[\text{ and }, y = \frac{3a t^2}{1 + t^2}\]

Differentiating it with respect to t,

\[\frac{dx}{dt} = \left[ \frac{\left( 1 + t^2 \right)\frac{d}{dt}\left( 3a t^2 \right) - 3a t^2 \frac{d}{dt}\left( 1 + t^2 \right)}{\left( 1 + t^2 \right)^2} \right] ..............\left[\text{using quotient rule } \right]\]

\[ \Rightarrow \frac{dx}{dt} = \left[ \frac{\left( 1 + t^2 \right)\left( 6at \right) - 3a t^2 \left( 2t \right)}{\left( 1 + t^2 \right)^2} \right]\]

\[ \Rightarrow \frac{dx}{dt} = \left[ \frac{6at + 6a t^3 - 6a t^3}{\left( 1 + t^2 \right)^2} \right]\]

\[ \Rightarrow \frac{dx}{dt} = \frac{6at}{\left( 1 + t^2 \right)^2} . . . \left( ii \right)\]

\[\text{ Dividing equation} \left( ii \right) by \left( i \right), \]

\[\frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{6at}{\left( 1 + t^2 \right)^2} \times \frac{\left( 1 + t^2 \right)^2}{3a\left( 1 - t^2 \right)} = \frac{2t}{1 - t^2}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Differentiation - Exercise 11.07 [Page 103]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 11 Differentiation
Exercise 11.07 | Q 8 | Page 103

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Differentiate tan (x° + 45°) ?


Differentiate log7 (2x − 3) ?


Differentiate \[3^{x^2 + 2x}\] ?


Differentiate \[\sin \left( \frac{1 + x^2}{1 - x^2} \right)\] ?


Differentiate \[\tan^{- 1} \left( e^x \right)\] ?


Differentiate  \[e^x \log \sin 2x\] ?


Differentiate \[3 e^{- 3x} \log \left( 1 + x \right)\] ?


Differentiate \[\sin^{- 1} \left( 1 - 2 x^2 \right), 0 < x < 1\] ?


Differentiate \[\tan^{- 1} \left\{ \frac{x}{a + \sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?


Differentiate \[\sin^{- 1} \left\{ \frac{\sqrt{1 + x} + \sqrt{1 - x}}{2} \right\}, 0 < x < 1\] ?


Differentiate \[\cos^{- 1} \left( \frac{1 - x^{2n}}{1 + x^{2n}} \right), < x < \infty\] ?


Differentiate \[\tan^{- 1} \left( \frac{a + b \tan x}{b - a \tan x} \right)\] ?


Differentiate \[\tan^{- 1} \left\{ \frac{x^{1/3} + a^{1/3}}{1 - \left( a x \right)^{1/3}} \right\}\] ?


If  \[y = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), 0 < x < 1,\] prove that  \[\frac{dy}{dx} = \frac{4}{1 + x^2}\] ?

 


If \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, - \frac{1}{2} < x < 0, \text{ find } \frac{dy}{dx} \] ?


Find  \[\frac{dy}{dx}\] in the following case \[\left( x + y \right)^2 = 2axy\] ?

 


If \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?


If  \[\tan \left( x + y \right) + \tan \left( x - y \right) = 1, \text{ find}  \frac{dy}{dx}\] ?


If \[\sin^2 y + \cos xy = k,\] find  \[\frac{dy}{dx}\] at \[x = 1 , \] \[y = \frac{\pi}{4} .\] 


Differentiate \[x^{\tan^{- 1} x }\]  ?


Find \[\frac{dy}{dx}\] \[y = x^{\cos x} + \left( \sin x \right)^{\tan x}\] ?


\[\text{ If } \left( x - y \right) e^\frac{x}{x - y} = a,\text{  prove that y }\frac{dy}{dx} + x = 2y\] ?

If  \[y = \sqrt{\log x + \sqrt{\log x + \sqrt{\log x + ... to \infty}}}\], prove that \[\left( 2 y - 1 \right) \frac{dy}{dx} = \frac{1}{x}\] ?

 


Find \[\frac{dy}{dx}\], when \[x = a t^2 \text{ and } y = 2\ at \] ?


Find \[\frac{dy}{dx}\] ,When \[x = a \left( 1 - \cos \theta \right) \text{ and } y = a \left( \theta + \sin \theta \right) \text{ at } \theta  = \frac{\pi}{2}\] ?


If  \[x = a\left( t + \frac{1}{t} \right) \text{ and y } = a\left( t - \frac{1}{t} \right)\] ,prove that  \[\frac{dy}{dx} = \frac{x}{y}\]?

 


Differentiate (log x)x with respect to log x ?


Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{2 x}{1 - x^2} \right), \text{ if } - 1 < x < 1\] ?


Differentiate \[\sin^{- 1} \left( 2 ax \sqrt{1 - a^2 x^2} \right)\] with respect to \[\sqrt{1 - a^2 x^2}, \text{ if }-\frac{1}{\sqrt{2}} < ax < \frac{1}{\sqrt{2}}\] ?


If \[\pi \leq x \leq 2\pi \text { and y } = \cos^{- 1} \left( \cos x \right), \text { find } \frac{dy}{dx}\] ?


The derivative of \[\sec^{- 1} \left( \frac{1}{2 x^2 + 1} \right) \text { w . r . t }. \sqrt{1 + 3 x} \text { at } x = - 1/3\]


If \[\sin^{- 1} \left( \frac{x^2 - y^2}{x^2 + y^2} \right) = \text { log a then } \frac{dy}{dx}\] is equal to _____________ .


If \[y = \log \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] __________ .


If y = 2 sin x + 3 cos x, show that \[\frac{d^2 y}{d x^2} + y = 0\] ?


If y = ae2x + be−x, show that, \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\] ?


\[ \text { If x } = a \sin t \text { and y } = a\left( \cos t + \log \tan\frac{t}{2} \right), \text { find } \frac{d^2 y}{d x^2} \] ?


\[\text { If x } = a \sin t - b \cos t, y = a \cos t + b \sin t, \text { prove that } \frac{d^2 y}{d x^2} = - \frac{x^2 + y^2}{y^3} \] ?


If \[f\left( x \right) = \frac{\sin^{- 1} x}{\sqrt{1 - x^2}}\] then (1 − x)2 '' (x) − xf(x) =

 


If xy − loge y = 1 satisfies the equation \[x\left( y y_2 + y_1^2 \right) - y_2 + \lambda y y_1 = 0\]

 


If xy = e(x – y), then show that `dy/dx = (y(x-1))/(x(y+1)) .`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×