English

If Tan ( X + Y ) + Tan ( X − Y ) = 1 , Find D Y D X ? - Mathematics

Advertisements
Advertisements

Question

If  \[\tan \left( x + y \right) + \tan \left( x - y \right) = 1, \text{ find}  \frac{dy}{dx}\] ?

Sum

Solution

\[\text{ We have, } \tan\left( x + y \right) + \tan\left( x - y \right) = 1\]

Differentiating with respect to x, we get, 

\[\Rightarrow \frac{d}{dx}\tan\left( x + y \right) + \frac{d}{dx}\tan\left( x - y \right) = \frac{d}{dx}\left( 1 \right)\]

\[ \Rightarrow \sec^2 \left( x + y \right)\frac{d}{dx}\left( x + y \right) + \sec^2 \left( x - y \right)\frac{d}{dx}\left( x - y \right) = 0 \]

\[ \Rightarrow \sec^2 \left( x + y \right)\left[ 1 + \frac{dy}{dx} \right] + \sec^2 \left( x - y \right)\left[ 1 - \frac{dy}{dx} \right] = 0\]

\[ \Rightarrow \sec^2 \left( x + y \right)\frac{dy}{dx} - \sec^2 \left( x - y \right)\frac{dy}{dx} = - \left[ \sec^2 \left( x + y \right) + \sec^2 \left( x - y \right) \right]\]

\[ \Rightarrow \frac{dy}{dx}\left[ \sec^2 \left( x + y \right) - \sec^2 \left( x - y \right) \right] = - \left[ \sec^2 \left( x + y \right) + \sec^2 \left( x - y \right) \right]\]

\[ \Rightarrow \frac{dy}{dx} = \frac{\sec^2 \left( x + y \right) + \sec^2 \left( x - y \right)}{\sec^2 \left( x - y \right) - \sec^2 \left( x + y \right)}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Differentiation - Exercise 11.04 [Page 75]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 11 Differentiation
Exercise 11.04 | Q 26 | Page 75

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Differentiate the following functions from first principles eax+b.


Differentiate the following functions from first principles ecos x.


Differentiate (log sin x)?


Differentiate \[\log \left( 3x + 2 \right) - x^2 \log \left( 2x - 1 \right)\] ?


Differentiate \[\log \sqrt{\frac{x - 1}{x + 1}}\] ?


If  \[y = \log \sqrt{\frac{1 + \tan x}{1 - \tan x}}\]  prove that \[\frac{dy}{dx} = \sec 2x\] ?


If \[y = e^x + e^{- x}\] prove that  \[\frac{dy}{dx} = \sqrt{y^2 - 4}\] ?


Differentiate \[\tan^{- 1} \left\{ \frac{x}{\sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?


Differentiate \[\tan^{- 1} \left( \frac{\sin x}{1 + \cos x} \right), - \pi < x < \pi\] ?


Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] ?


Differentiate \[\tan^{- 1} \left( \frac{a + bx}{b - ax} \right)\] ?


Differentiate \[\tan^{- 1} \left( \frac{5 x}{1 - 6 x^2} \right), - \frac{1}{\sqrt{6}} < x < \frac{1}{\sqrt{6}}\] ?


Find  \[\frac{dy}{dx}\] in the following case  \[x^{2/3} + y^{2/3} = a^{2/3}\] ?

 


Find  \[\frac{dy}{dx}\] in the following case \[\tan^{- 1} \left( x^2 + y^2 \right) = a\] ?

 


Find  \[\frac{dy}{dx}\] \[y = \sin x \sin 2x \sin 3x \sin 4x\] ?

 


Find  \[\frac{dy}{dx}\] \[y = x^{\sin x} + \left( \sin x \right)^x\] ?


Find \[\frac{dy}{dx}\] , when \[x = \frac{3 at}{1 + t^2}, \text{ and } y = \frac{3 a t^2}{1 + t^2}\] ?


If \[x = a \left( \frac{1 + t^2}{1 - t^2} \right) \text { and y } = \frac{2t}{1 - t^2}, \text { find } \frac{dy}{dx}\] ?


\[\sin x = \frac{2t}{1 + t^2}, \tan y = \frac{2t}{1 - t^2}, \text { find }  \frac{dy}{dx}\] ?

Differentiate\[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right)\] with respect to \[\sin^{-1} \left( \frac{2x}{1 + x^2} \right)\], If \[- 1 < x < 1, x \neq 0 .\] ?


Differentiate \[\left( \cos x \right)^{\sin x }\] with respect to \[\left( \sin x \right)^{\cos x }\]?


Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { if } 0 < x < 1\] ?


Differentiate \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right)\] with respect to \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right), \text { if } - \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?


If \[y = \sin^{- 1} \left( \sin x \right), - \frac{\pi}{2} \leq x \leq \frac{\pi}{2}\] ,Then, write the value of \[\frac{dy}{dx} \text{ for } x \in \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \] ?


If \[y = x \left| x \right|\] , find \[\frac{dy}{dx} \text{ for } x < 0\] ?


If f (x) is an even function, then write whether `f' (x)` is even or odd ?


The derivative of the function \[\cot^{- 1} \left| \left( \cos 2 x \right)^{1/2} \right| \text{ at } x = \pi/6 \text{ is }\] ______ .


If \[x^y = e^{x - y} ,\text{ then } \frac{dy}{dx}\] is __________ .


If \[3 \sin \left( xy \right) + 4 \cos \left( xy \right) = 5, \text { then } \frac{dy}{dx} =\] _____________ .


If \[f\left( x \right) = \sqrt{x^2 + 6x + 9}, \text { then } f'\left( x \right)\] is equal to ______________ .


Find the second order derivatives of the following function x3 log ?


If log y = tan−1 x, show that (1 + x2)y2 + (2x − 1) y1 = 0 ?


If y = cot x show that \[\frac{d^2 y}{d x^2} + 2y\frac{dy}{dx} = 0\] ?


If y = cos−1 x, find \[\frac{d^2 y}{d x^2}\] in terms of y alone ?


If y = (cot−1 x)2, prove that y2(x2 + 1)2 + 2x (x2 + 1) y1 = 2 ?


\[\text { Find A and B so that y = A } \sin3x + B \cos3x \text { satisfies the equation }\]

\[\frac{d^2 y}{d x^2} + 4\frac{d y}{d x} + 3y = 10 \cos3x \] ?


If y = a sin mx + b cos mx, then \[\frac{d^2 y}{d x^2}\]   is equal to

 


If x = a (1 + cos θ), y = a(θ + sin θ), prove that \[\frac{d^2 y}{d x^2} = \frac{- 1}{a}at \theta = \frac{\pi}{2}\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×