English

If X = a ( 1 + T 2 1 − T 2 ) and Y = 2 T 1 − T 2 , Find D Y D X ? - Mathematics

Advertisements
Advertisements

Question

If \[x = a \left( \frac{1 + t^2}{1 - t^2} \right) \text { and y } = \frac{2t}{1 - t^2}, \text { find } \frac{dy}{dx}\] ?

Solution

\[\text { We have, x } = a\left( \frac{1 + t^2}{1 - t^2} \right)\]
\[\Rightarrow \frac{dx}{dt} = a\left[ \frac{\left( 1 - t^2 \right)\frac{d}{dt}\left( 1 + t^2 \right) - \left( 1 + t^2 \right)\frac{d}{dt}\left( 1 - t^2 \right)}{\left( 1 - t^2 \right)^2} \right] \left[ \text { Using quotient rule } \right]\]
\[ \Rightarrow \frac{dx}{dt} = a\left[ \frac{\left( 1 - t^2 \right)\left( 2t \right) - \left( 1 + t^2 \right)\left( - 2t \right)}{\left( 1 - t^2 \right)^2} \right]\]
\[ \Rightarrow \frac{dx}{dt} = a\left[ \frac{2t - 2 t^3 + 2t + 2 t^3}{\left( 1 - t^2 \right)^2} \right]\]
\[ \Rightarrow \frac{dx}{dt} = \frac{4at}{\left( 1 - t^2 \right)^2} . . . \left( i \right)\]
\[\text { and,} \]
\[ y = \frac{2t}{1 - t^2}\]
\[\Rightarrow \frac{dy}{dt} = 2\left[ \frac{\left( 1 - t^2 \right)\frac{d}{dt}\left( t \right) - t\frac{d}{dt}\left( 1 - t^2 \right)}{\left( 1 - t^2 \right)^2} \right] \left[ \text { Using quotient rule } \right]\]
\[ \Rightarrow \frac{dy}{dt} = 2\left[ \frac{\left( 1 - t^2 \right)\left( 1 \right) - t\left( - 2t \right)}{\left( 1 - t^2 \right)^2} \right]\]
\[ \Rightarrow \frac{dy}{dt} = 2\left[ \frac{1 - t^2 + 2 t^2}{\left( 1 - t^2 \right)^2} \right]\]
\[ \Rightarrow \frac{dy}{dt} = \frac{2\left( 1 + t^2 \right)}{\left( 1 - t^2 \right)^2} . . . \left( ii \right)\]
\[\text { Dividing equation } \left( ii \right) \text { by } \left( i \right), \]
\[\frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{2\left( 1 + t^2 \right)}{\left( 1 - t^2 \right)^2} \times \frac{\left( 1 - t^2 \right)^2}{4at}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\left( 1 + t^2 \right)}{2at}\]

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Differentiation - Exercise 11.07 [Page 103]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 11 Differentiation
Exercise 11.07 | Q 21 | Page 103

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If the sum of the lengths of the hypotenuse and a side of a right triangle is given, show that the area of the triangle is maximum, when the angle between them is 60º.


Differentiate the following functions from first principles e3x.


Differentiate \[e^{\sin} \sqrt{x}\] ?


Differentiate \[\log \left( \frac{\sin x}{1 + \cos x} \right)\] ?


Differentiate \[\log \left( x + \sqrt{x^2 + 1} \right)\] ?


Differentiate \[\frac{2^x \cos x}{\left( x^2 + 3 \right)^2}\] ?


Differentiate \[\frac{3 x^2 \sin x}{\sqrt{7 - x^2}}\] ?


 If \[y = \sqrt{x + 1} + \sqrt{x - 1}\] , prove that \[\sqrt{x^2 - 1}\frac{dy}{dx} = \frac{1}{2}y\] ?


If \[y = \sqrt{a^2 - x^2}\] prove that  \[y\frac{dy}{dx} + x = 0\] ?


Differentiate \[\tan^{- 1} \left\{ \frac{x}{\sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?


Differentiate \[\cos^{- 1} \left\{ \frac{\cos x + \sin x}{\sqrt{2}} \right\}, - \frac{\pi}{4} < x < \frac{\pi}{4}\] ?


Differentiate \[\tan^{- 1} \left( \frac{a + x}{1 - ax} \right)\] ?


If \[y = \sin^{- 1} \left( \frac{x}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right), 0 < x < \infty\] prove that  \[\frac{dy}{dx} = \frac{2}{1 + x^2} \] ?

 


If \[y = \tan^{- 1} \left( \frac{\sqrt{1 + x} - \sqrt{1 - x}}{\sqrt{1 + x} + \sqrt{1 - x}} \right), \text{find } \frac{dy}{dx}\] ?


If \[y = \cos^{- 1} \left\{ \frac{2x - 3 \sqrt{1 - x^2}}{\sqrt{13}} \right\}, \text{ find } \frac{dy}{dx}\] ?


Differentiate \[\left( \sin x \right)^{\cos x}\] ?


If `y=(sinx)^x + sin^-1 sqrtx  "then find"  dy/dx` 


If  \[y = \sqrt{\log x + \sqrt{\log x + \sqrt{\log x + ... to \infty}}}\], prove that \[\left( 2 y - 1 \right) \frac{dy}{dx} = \frac{1}{x}\] ?

 


\[y = \left( \sin x \right)^{\left( \sin x \right)^{\left( \sin x \right)^{. . . \infty}}} \],prove that \[\frac{y^2 \cot x}{\left( 1 - y \log \sin x \right)}\] ?


If \[y = e^{x^{e^x}} + x^{e^{e^x}} + e^{x^{x^e}}\], prove that  \[\frac{dy}{dx} = e^{x^{e^x}} \cdot x^{e^x} \left\{ \frac{e^x}{x} + e^x \cdot \log x \right\}+ x^{e^{e^x}} \cdot e^{e^x} \left\{ \frac{1}{x} + e^x \cdot \log x \right\} + e^{x^{x^e}} x^{x^e} \cdot x^{e - 1} \left\{ x + e \log x \right\}\]

 


Find \[\frac{dy}{dx}\] , when \[x = \frac{3 at}{1 + t^2}, \text{ and } y = \frac{3 a t^2}{1 + t^2}\] ?


Find \[\frac{dy}{dx}\] when \[x = \frac{2 t}{1 + t^2} \text{ and } y = \frac{1 - t^2}{1 + t^2}\] ?


Find  \[\frac{dy}{dx}\] , when  \[x = \frac{1 - t^2}{1 + t^2} \text{ and y } = \frac{2 t}{1 + t^2}\] ?

 


Differentiate \[\left( \cos x \right)^{\sin x }\] with respect to \[\left( \sin x \right)^{\cos x }\]?


Differentiate \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right)\] with respect to \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right), \text { if } - \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?


If \[f\left( 1 \right) = 4, f'\left( 1 \right) = 2\] find the value of the derivative of  \[\log \left( f\left( e^x \right) \right)\] w.r. to x at the point x = 0 ?

 


If \[\left| x \right| < 1 \text{ and y} = 1 + x + x^2 + . . \]  to ∞, then find the value of  \[\frac{dy}{dx}\] ?


If \[3 \sin \left( xy \right) + 4 \cos \left( xy \right) = 5, \text { then } \frac{dy}{dx} =\] _____________ .


If  \[\sqrt{1 - x^6} + \sqrt{1 - y^6} = a^3 \left( x^3 - y^3 \right)\] then \[\frac{dy}{dx}\] is equal to ____________ .


Find the second order derivatives of the following function sin (log x) ?


Find the second order derivatives of the following function e6x cos 3x  ?


If y = x3 log x, prove that \[\frac{d^4 y}{d x^4} = \frac{6}{x}\] ?


If y = log (sin x), prove that \[\frac{d^3 y}{d x^3} = 2 \cos \ x \ {cosec}^3 x\] ?


If y = 2 sin x + 3 cos x, show that \[\frac{d^2 y}{d x^2} + y = 0\] ?


If y = tan−1 x, show that \[\left( 1 + x^2 \right) \frac{d^2 y}{d x^2} + 2x\frac{dy}{dx} = 0\] ?


If y = cot x show that \[\frac{d^2 y}{d x^2} + 2y\frac{dy}{dx} = 0\] ?


\[\text { If x } = \cos t + \log \tan\frac{t}{2}, y = \sin t, \text { then find the value of } \frac{d^2 y}{d t^2} \text { and } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?


If x = f(t) cos t − f' (t) sin t and y = f(t) sin t + f'(t) cos t, then\[\left( \frac{dx}{dt} \right)^2 + \left( \frac{dy}{dt} \right)^2 =\]

 


If x = a (1 + cos θ), y = a(θ + sin θ), prove that \[\frac{d^2 y}{d x^2} = \frac{- 1}{a}at \theta = \frac{\pi}{2}\]


The number of road accidents in the city due to rash driving, over a period of 3 years, is given in the following table:

Year Jan-March April-June July-Sept. Oct.-Dec.
2010 70 60 45 72
2011 79 56 46 84
2012 90 64 45 82

Calculate four quarterly moving averages and illustrate them and original figures on one graph using the same axes for both.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×