English

Find D Y D X , When X = 1 − T 2 1 + T 2 and Y = 2 T 1 + T 2 ? - Mathematics

Advertisements
Advertisements

Question

Find  \[\frac{dy}{dx}\] , when  \[x = \frac{1 - t^2}{1 + t^2} \text{ and y } = \frac{2 t}{1 + t^2}\] ?

 

Solution

\[\text{ We have, y } = \frac{2t}{1 + t^2}\]
\[\Rightarrow \frac{dy}{dt} = \left[ \frac{\left( 1 + t^2 \right)\frac{d}{dt}\left( 2t \right) - 2t\frac{d}{dt}\left( 1 + t^2 \right)}{\left( 1 + t^2 \right)^2} \right] \left[ \text{ using quotient rule } \right]\]
\[ \Rightarrow \frac{dy}{dt} = \left[ \frac{\left( 1 + t^2 \right)\left( 2 \right) - 2t\left( 2t \right)}{\left( 1 + t^2 \right)^2} \right]\]
\[ \Rightarrow \frac{dy}{dt} = \left[ \frac{2 + 2 t^2 - 4 t^2}{\left( 1 + t^2 \right)^2} \right]\]
\[ \Rightarrow \frac{dy}{dt} = \left[ \frac{2 - 2 t^2}{\left( 1 + t^2 \right)^2} \right] . . . \left( i \right)\]
\[\text{ and,} \]
\[x = \frac{1 - t^2}{1 + t^2}\]
\[\Rightarrow \frac{dx}{dt} = \left[ \frac{\left( 1 + t^2 \right)\frac{d}{dt}\left( 1 - t^2 \right) - \left( 1 - t^2 \right)\frac{d}{dt}\left( 1 + t^2 \right)}{\left( 1 + t^2 \right)^2} \right]\]
\[ \Rightarrow \frac{dx}{dt} = \left[ \frac{\left( 1 + t^2 \right)\left( - 2t \right) - \left( 1 - t^2 \right)\left( 2t \right)}{\left( 1 + t^2 \right)^2} \right]\]
\[ \Rightarrow \frac{dx}{dt} = \left[ \frac{- 4t}{\left( 1 + t^2 \right)^2} \right] . . . \left( ii \right)\]
\[\text{ Dividing equation} \left( i \right) \text{ by } \left( ii \right), \text{ we get }, \]
\[\frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{2\left( 1 - t^2 \right)}{\left( 1 + t^2 \right)^2} \times \frac{\left( 1 + t^2 \right)^2}{- 4t}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{2\left( 1 - t^2 \right)}{- 4t}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{t^2 - 1}{2t}\]
shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Differentiation - Exercise 11.07 [Page 103]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 11 Differentiation
Exercise 11.07 | Q 13 | Page 103

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Differentiate \[e^{3 x} \cos 2x\] ?


Differentiate \[\log \left( x + \sqrt{x^2 + 1} \right)\] ?


Differentiate \[\log \left( 3x + 2 \right) - x^2 \log \left( 2x - 1 \right)\] ?


Differentiate \[\sin^2 \left\{ \log \left( 2x + 3 \right) \right\}\] ?


Differentiate  \[e^x \log \sin 2x\] ?


Differentiate \[\cos^{- 1} \left\{ \sqrt{\frac{1 + x}{2}} \right\}, - 1 < x < 1\] ?


Differentiate  \[\sin^{- 1} \left\{ \sqrt{\frac{1 - x}{2}} \right\}, 0 < x < 1\]  ?


Differentiate \[\tan^{- 1} \left\{ \frac{x}{a + \sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?


Differentiate \[\cos^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?


 Differentiate \[\tan^{- 1} \left( \frac{x - a}{x + a} \right)\] ?


If  \[y = se c^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right), x > 0 . \text{ Find} \frac{dy}{dx}\] ?

 


If \[x \sqrt{1 + y} + y \sqrt{1 + x} = 0\] , prove that \[\left( 1 + x \right)^2 \frac{dy}{dx} + 1 = 0\]  ?


If \[\sin^2 y + \cos xy = k,\] find  \[\frac{dy}{dx}\] at \[x = 1 , \] \[y = \frac{\pi}{4} .\] 


Differentiate \[\left( 1 + \cos x \right)^x\] ?


Differentiate \[\left( \log x \right)^{\cos x}\] ?


Differentiate  \[\left( \sin x \right)^{\log x}\] ?


Differentiate \[x^{\sin^{- 1} x}\]  ?


Differentiate \[\left( \tan x \right)^{1/x}\] ?


Find \[\frac{dy}{dx}\] \[y = x^{\log x }+ \left( \log x \right)^x\] ?


If \[x^y \cdot y^x = 1\] , prove that \[\frac{dy}{dx} = - \frac{y \left( y + x \log y \right)}{x \left( y \log x + x \right)}\] ?


If  \[y = \sqrt{\log x + \sqrt{\log x + \sqrt{\log x + ... to \infty}}}\], prove that \[\left( 2 y - 1 \right) \frac{dy}{dx} = \frac{1}{x}\] ?

 


Find \[\frac{dy}{dx}\] ,When \[x = a \left( 1 - \cos \theta \right) \text{ and } y = a \left( \theta + \sin \theta \right) \text{ at } \theta  = \frac{\pi}{2}\] ?


Find \[\frac{dy}{dx}\] ,When \[x = e^\theta \left( \theta + \frac{1}{\theta} \right) \text{ and } y = e^{- \theta} \left( \theta - \frac{1}{\theta} \right)\] ?


Differentiate\[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right)\] with respect to \[\sin^{-1} \left( \frac{2x}{1 + x^2} \right)\], If \[- 1 < x < 1, x \neq 0 .\] ?


Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{2 x}{1 - x^2} \right), \text{ if } - 1 < x < 1\] ?


If \[x = a \left( \theta + \sin \theta \right), y = a \left( 1 + \cos \theta \right), \text{ find} \frac{dy}{dx}\] ?


The differential coefficient of f (log x) w.r.t. x, where f (x) = log x is ___________ .


If \[3 \sin \left( xy \right) + 4 \cos \left( xy \right) = 5, \text { then } \frac{dy}{dx} =\] _____________ .


If \[f\left( x \right) = \left| x^2 - 9x + 20 \right|\]  then `f' (x)` is equal to ____________ .


If \[y = \frac{1}{1 + x^{a - b} +^{c - b}} + \frac{1}{1 + x^{b - c} + x^{a - c}} + \frac{1}{1 + x^{b - a} + x^{c - a}}\] then \[\frac{dy}{dx}\]  is equal to ______________ .


If y = x + tan x, show that  \[\cos^2 x\frac{d^2 y}{d x^2} - 2y + 2x = 0\] ?


If y = cosec−1 xx >1, then show that \[x\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + \left( 2 x^2 - 1 \right)\frac{dy}{dx} = 0\] ?


\[\text { If y } = x^n \left\{ a \cos\left( \log x \right) + b \sin\left( \log x \right) \right\}, \text { prove that } x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)x\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0 \] Disclaimer: There is a misprint in the question. It must be 

\[x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)x\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0\] instead of 1

\[x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0\] ?


If y = a xn + 1 + bxn and \[x^2 \frac{d^2 y}{d x^2} = \lambda y\]  then write the value of λ ?


If y = |x − x2|, then find \[\frac{d^2 y}{d x^2}\] ?


If y = axn+1 + bx−n, then \[x^2 \frac{d^2 y}{d x^2} =\] 

 


If y = etan x, then (cos2 x)y2 =


If y = xx, prove that \[\frac{d^2 y}{d x^2} - \frac{1}{y} \left( \frac{dy}{dx} \right)^2 - \frac{y}{x} = 0 .\]


Differentiate `log [x+2+sqrt(x^2+4x+1)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×