English

Differentiate ( Tan X ) 1 / X ? - Mathematics

Advertisements
Advertisements

Question

Differentiate \[\left( \tan x \right)^{1/x}\] ?

Solution

\[\text{ Let y }= \left( \tan x \right)^\frac{1}{x} . . . \left( i \right)\]
\[\text{ Taking log on both sides,} \]
\[\log y = \log \left( \tan x \right)^\frac{1}{x} \]
\[ \Rightarrow \log y = \frac{1}{x}\log\left( \tan x \right) \]
\[\text{ Differentiating with respect to x}, \]
\[\frac{1}{y}\frac{dy}{dx} = \frac{1}{x}\frac{d}{dx}\left\{ \log\left( \tan x \right) \right\} + \log\left( \tan x \right)\frac{d}{dx}\left( \frac{1}{x} \right) \]
\[ \Rightarrow \frac{1}{y}\frac{dy}{dx} = \frac{1}{x} \times \frac{1}{\tan x}\frac{d}{dx}\left( \tan x \right) + \log\left( \tan x \right)\left( - \frac{1}{x^2} \right)\]
\[ \Rightarrow \frac{1}{y}\frac{dy}{dx} = \frac{1}{x\tan x}\left( \sec^2 x \right) - \frac{\log\left( \tan x \right)}{x^2}\]
\[ \Rightarrow \frac{dy}{dx} = y\left[ \frac{\sec^2 x}{x\tan x} - \frac{\log\left( \tan x \right)}{x^2} \right]\]
\[ \Rightarrow \frac{dy}{dx} = \left( \tan x \right)^\frac{1}{x} \left[ \frac{\sec^2 x}{x\tan x} - \frac{\log\left( \tan x \right)}{x^2} \right] \left[ \text{ using equation } \left( i \right) \right]\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Differentiation - Exercise 11.05 [Page 88]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 11 Differentiation
Exercise 11.05 | Q 16 | Page 88

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Differentiate \[3^{x \log x}\] ?


Differentiate \[\sqrt{\frac{1 + x}{1 - x}}\] ?


Differentiate \[e^{\tan^{- 1}} \sqrt{x}\] ?


Differentiate \[\frac{3 x^2 \sin x}{\sqrt{7 - x^2}}\] ?


Differentiate \[\sin^2 \left\{ \log \left( 2x + 3 \right) \right\}\] ?


If \[y = \frac{1}{2} \log \left( \frac{1 - \cos 2x }{1 + \cos 2x} \right)\] , prove that \[\frac{ dy }{ dx } = 2 \text{cosec }2x \] ?


If \[y = \sqrt{x^2 + a^2}\] prove that  \[y\frac{dy}{dx} - x = 0\] ?


Differentiate \[\sin^{- 1} \left\{ \sqrt{1 - x^2} \right\}, 0 < x < 1\] ?


Differentiate \[\tan^{- 1} \left\{ \frac{x}{\sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?


Differentiate \[\tan^{- 1} \left\{ \frac{x}{1 + \sqrt{1 - x^2}} \right\}, - 1 < x < 1\] ?


Differentiate \[\cos^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?


Differentiate \[\sin^{- 1} \left\{ \frac{\sqrt{1 + x} + \sqrt{1 - x}}{2} \right\}, 0 < x < 1\] ?


If \[y = \tan^{- 1} \left( \frac{\sqrt{1 + x} - \sqrt{1 - x}}{\sqrt{1 + x} + \sqrt{1 - x}} \right), \text{find } \frac{dy}{dx}\] ?


If \[y = \cos^{- 1} \left\{ \frac{2x - 3 \sqrt{1 - x^2}}{\sqrt{13}} \right\}, \text{ find } \frac{dy}{dx}\] ?


Differentiate \[\sin^{- 1} \left\{ \frac{2^{x + 1} \cdot 3^x}{1 + \left( 36 \right)^x} \right\}\]  with respect to x ?


If \[x y^2 = 1,\] prove that \[2\frac{dy}{dx} + y^3 = 0\] ?


Differentiate \[\left( \sin^{- 1} x \right)^x\] ?


Differentiate \[x^{\sin^{- 1} x}\]  ?


Differentiate \[x^{\tan^{- 1} x }\]  ?


Differentiate  \[\left( x^x \right) \sqrt{x}\] ?


Find \[\frac{dy}{dx}\] \[y = x^{\log x }+ \left( \log x \right)^x\] ?


Find the derivative of the function f (x) given by  \[f\left( x \right) = \left( 1 + x \right) \left( 1 + x^2 \right) \left( 1 + x^4 \right) \left( 1 + x^8 \right)\] and hence find `f' (1)` ?

 


If \[x = \sin^{- 1} \left( \frac{2 t}{1 + t^2} \right) \text{ and y } = \tan^{- 1} \left( \frac{2 t}{1 - t^2} \right), - 1 < t < 1\] porve that \[\frac{dy}{dx} = 1\] ?

 


Differentiate \[\tan^{- 1} \left( \frac{x - 1}{x + 1} \right)\] with respect to \[\sin^{- 1} \left( 3x - 4 x^3 \right), \text { if }- \frac{1}{2} < x < \frac{1}{2}\] ?


Differentiate \[\tan^{- 1} \left( \frac{1 - x}{1 + x} \right)\] with respect to \[\sqrt{1 - x^2},\text {if} - 1 < x < 1\] ?


If \[y = \log \sqrt{\tan x}, \text{ write } \frac{dy}{dx} \] ?


The derivative of the function \[\cot^{- 1} \left| \left( \cos 2 x \right)^{1/2} \right| \text{ at } x = \pi/6 \text{ is }\] ______ .


If \[3 \sin \left( xy \right) + 4 \cos \left( xy \right) = 5, \text { then } \frac{dy}{dx} =\] _____________ .


If  \[\sqrt{1 - x^6} + \sqrt{1 - y^6} = a^3 \left( x^3 - y^3 \right)\] then \[\frac{dy}{dx}\] is equal to ____________ .


If \[y = \tan^{- 1} \left( \frac{\sin x + \cos x}{\cos x - \sin x} \right), \text { then  } \frac{dy}{dx}\] is equal to ___________ .


Find the second order derivatives of the following function ex sin 5x  ?


If y = ex cos x, show that \[\frac{d^2 y}{d x^2} = 2 e^{- x} \sin x\] ?


If x = a(1 − cos θ), y = a(θ + sin θ), prove that \[\frac{d^2 y}{d x^2} = - \frac{1}{a}\text { at } \theta = \frac{\pi}{2}\] ?


If \[y = \left[ \log \left( x + \sqrt{x^2 + 1} \right) \right]^2\] show that \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 2\] ?


\[\text { If y } = x^n \left\{ a \cos\left( \log x \right) + b \sin\left( \log x \right) \right\}, \text { prove that } x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)x\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0 \] Disclaimer: There is a misprint in the question. It must be 

\[x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)x\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0\] instead of 1

\[x^2 \frac{d^2 y}{d x^2} + \left( 1 - 2n \right)\frac{d y}{d x} + \left( 1 + n^2 \right)y = 0\] ?


If y = a xn + 1 + bxn and \[x^2 \frac{d^2 y}{d x^2} = \lambda y\]  then write the value of λ ?


If y = x + ex, find \[\frac{d^2 x}{d y^2}\] ?


If \[\frac{d}{dx}\left[ x^n - a_1 x^{n - 1} + a_2 x^{n - 2} + . . . + \left( - 1 \right)^n a_n \right] e^x = x^n e^x\] then the value of ar, 0 < r ≤ n, is equal to 

 


The number of road accidents in the city due to rash driving, over a period of 3 years, is given in the following table:

Year Jan-March April-June July-Sept. Oct.-Dec.
2010 70 60 45 72
2011 79 56 46 84
2012 90 64 45 82

Calculate four quarterly moving averages and illustrate them and original figures on one graph using the same axes for both.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×