Advertisements
Advertisements
Question
If \[y = \tan^{- 1} \left( \frac{\sin x + \cos x}{\cos x - \sin x} \right), \text { then } \frac{dy}{dx}\] is equal to ___________ .
Options
`1/2`
0
1
none of these
Solution
`1`
\[\text { We have, y } = \tan^{- 1} \left( \frac{\sin x + \cos x}{\cos x - \sin x} \right)\]
\[ \Rightarrow \frac{dy}{dx} = \frac{1}{1 + \left( \frac{\sin x + \cos x}{\cos x - \sin x} \right)^2}\frac{d}{dx}\left( \frac{\sin x + \cos x}{\cos x - \sin x} \right)\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\left( \cos x - \sin x \right)^2}{\left( \cos x - \sin x \right)^2 + \left( \sin x + \cos x \right)^2}\left[ \frac{\left( \cos x - \sin x \right)\frac{d}{dx}\left( \sin x + \cos x \right) - \left( \sin x + \cos x \right)\frac{d}{dx}\left( \cos x - \sin x \right)}{\left( \cos x - \sin x \right)^2} \right]\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\left( \cos x - \sin x \right)^2}{\left( \cos x - \sin x \right)^2 + \left( \sin x + \cos x \right)^2}\left[ \frac{\left( \cos x - \sin x \right)\left( \cos x - \sin x \right) - \left( \sin x + \cos x \right)\left( - \sin x - \cos x \right)}{\left( \cos x - \sin x \right)^2} \right]\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\left( \cos x - \sin x \right)^2}{\left( \cos x - \sin x \right)^2 + \left( \sin x + \cos x \right)^2}\left[ \frac{\left( \cos x - \sin x \right)\left( \cos x - \sin x \right) + \left( \sin x + \cos x \right)\left( \sin x + \cos x \right)}{\left( \cos x - \sin x \right)^2} \right]\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\left( \cos x - \sin x \right)^2}{\left( \cos x - \sin x \right)^2 + \left( \sin x + \cos x \right)^2} \times \frac{\left( \cos x - \sin x \right)^2 + \left( \sin x + \cos x \right)^2}{\left( \cos x - \sin x \right)^2}\]
\[ \Rightarrow \frac{dy}{dx} = 1\]
APPEARS IN
RELATED QUESTIONS
Prove that `y=(4sintheta)/(2+costheta)-theta `
Differentiate log7 (2x − 3) ?
Differentiate \[\sin^2 \left\{ \log \left( 2x + 3 \right) \right\}\] ?
Differentiate \[\frac{\sqrt{x^2 + 1} + \sqrt{x^2 - 1}}{\sqrt{x^2 + 1} - \sqrt{x^2 - 1}}\] ?
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\], prove that \[2 x\frac{dy}{dx} = \sqrt{x} - \frac{1}{\sqrt{x}}\] ?
Differentiate \[\cos^{- 1} \left\{ \sqrt{\frac{1 + x}{2}} \right\}, - 1 < x < 1\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{1 + \sqrt{1 - x^2}} \right\}, - 1 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{a + b \tan x}{b - a \tan x} \right)\] ?
If the derivative of tan−1 (a + bx) takes the value 1 at x = 0, prove that 1 + a2 = b ?
If \[y = \tan^{- 1} \left( \frac{\sqrt{1 + x} - \sqrt{1 - x}}{\sqrt{1 + x} + \sqrt{1 - x}} \right), \text{find } \frac{dy}{dx}\] ?
If \[y = \cos^{- 1} \left\{ \frac{2x - 3 \sqrt{1 - x^2}}{\sqrt{13}} \right\}, \text{ find } \frac{dy}{dx}\] ?
Find \[\frac{dy}{dx}\] in the following case \[\left( x^2 + y^2 \right)^2 = xy\] ?
Differentiate \[x^{\sin^{- 1} x}\] ?
Differentiate \[x^{x \cos x +} \frac{x^2 + 1}{x^2 - 1}\] ?
Differentiate \[\left( x \cos x \right)^x + \left( x \sin x \right)^{1/x}\] ?
If \[x^x + y^x = 1\], prove that \[\frac{dy}{dx} = - \left\{ \frac{x^x \left( 1 + \log x \right) + y^x \cdot \log y}{x \cdot y^\left( x - 1 \right)} \right\}\] ?
If \[y = x \sin y\] , prove that \[\frac{dy}{dx} = \frac{y}{x \left( 1 - x \cos y \right)}\] ?
\[y = \left( \sin x \right)^{\left( \sin x \right)^{\left( \sin x \right)^{. . . \infty}}} \],prove that \[\frac{y^2 \cot x}{\left( 1 - y \log \sin x \right)}\] ?
If \[y = \left( \tan x \right)^{\left( \tan x \right)^{\left( \tan x \right)^{. . . \infty}}}\], prove that \[\frac{dy}{dx} = 2\ at\ x = \frac{\pi}{4}\] ?
Find \[\frac{dy}{dx}\] , when \[x = b \sin^2 \theta \text{ and } y = a \cos^2 \theta\] ?
If \[x = 10 \left( t - \sin t \right), y = 12 \left( 1 - \cos t \right), \text { find } \frac{dy}{dx} .\] ?
\[\text { If }x = \cos t\left( 3 - 2 \cos^2 t \right), y = \sin t\left( 3 - 2 \sin^2 t \right) \text { find the value of } \frac{dy}{dx}\text{ at }t = \frac{\pi}{4}\] ?
If \[f\left( x \right) = \sqrt{x^2 - 10x + 25}\] then the derivative of f (x) in the interval [0, 7] is ____________ .
If \[y = \frac{1}{1 + x^{a - b} +^{c - b}} + \frac{1}{1 + x^{b - c} + x^{a - c}} + \frac{1}{1 + x^{b - a} + x^{c - a}}\] then \[\frac{dy}{dx}\] is equal to ______________ .
If \[y = \log \sqrt{\tan x}\] then the value of \[\frac{dy}{dx}\text { at }x = \frac{\pi}{4}\] is given by __________ .
If \[\sin^{- 1} \left( \frac{x^2 - y^2}{x^2 + y^2} \right) = \text { log a then } \frac{dy}{dx}\] is equal to _____________ .
If x = a sec θ, y = b tan θ, prove that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?
If x = a (1 − cos3 θ), y = a sin3 θ, prove that \[\frac{d^2 y}{d x^2} = \frac{32}{27a} \text { at } \theta = \frac{\pi}{6}\] ?
If x = a (θ − sin θ), y = a (1 + cos θ) prove that, find \[\frac{d^2 y}{d x^2}\] ?
If y = 3 e2x + 2 e3x, prove that \[\frac{d^2 y}{d x^2} - 5\frac{dy}{dx} + 6y = 0\] ?
If x = at2, y = 2 at, then \[\frac{d^2 y}{d x^2} =\]
Let f(x) be a polynomial. Then, the second order derivative of f(ex) is
If x = f(t) cos t − f' (t) sin t and y = f(t) sin t + f'(t) cos t, then\[\left( \frac{dx}{dt} \right)^2 + \left( \frac{dy}{dt} \right)^2 =\]
If xy − loge y = 1 satisfies the equation \[x\left( y y_2 + y_1^2 \right) - y_2 + \lambda y y_1 = 0\]
If p, q, r, s are real number and pr = 2(q + s) then for the equation x2 + px + q = 0 and x2 + rx + s = 0 which of the following statement is true?