Advertisements
Advertisements
Question
If \[y = \tan^{- 1} \left( \frac{\sqrt{1 + x} - \sqrt{1 - x}}{\sqrt{1 + x} + \sqrt{1 - x}} \right), \text{find } \frac{dy}{dx}\] ?
Solution
\[\text{Here, y }= \tan^{- 1} \left( \frac{\sqrt{1 + x} - \sqrt{1 - x}}{\sqrt{1 + x} + \sqrt{1 - x}} \right)\]
\[\text{Put x }= \cos2\theta\]
\[ \therefore y = \tan^{- 1} \left( \frac{\sqrt{1 + \cos2\theta} - \sqrt{1 - \cos2\theta}}{\sqrt{1 + \cos2\theta} + \sqrt{1 - \cos2\theta}} \right)\]
\[ = \tan^{- 1} \left( \frac{\sqrt{2 \cos^2 \theta} - \sqrt{2 \sin^2 \theta}}{\sqrt{2 \cos^2 \theta} + \sqrt{2 \sin^2 \theta}} \right)\]
\[ = \tan^{- 1} \left( \frac{\sqrt{2}\left( \cos\theta - sin\theta \right)}{\sqrt{2}\left( \cos\theta + sin\theta \right)} \right)\]
\[ = \tan^{- 1} \left( \frac{\frac{\cos\theta - sin\theta}{\cos\theta}}{\frac{\cos\theta + \sin\theta}{\cos\theta}} \right) \left[ \text{Dividing numerator and denominator by } \cos\theta \right]\]
\[ = \tan^{- 1} \left( \frac{\frac{\cos\theta}{\cos\theta} - \frac{\sin\theta}{\cos\theta}}{\frac{\cos\theta}{\cos\theta} + \frac{\sin\theta}{\cos\theta}} \right)\]
\[ = \tan^{- 1} \left( \frac{1 - \tan\theta}{1 + \tan\theta} \right)\]
\[ = \tan^{- 1} \left( \frac{\tan\frac{\pi}{4} - \tan\theta}{1 + \tan\frac{\pi}{4} \times \tan\theta} \right) \]
\[ = \tan^{- 1} \left[ \tan\left( \frac{\pi}{4} - \theta \right) \right] \]
\[ = \frac{\pi}{4} - \theta\]
\[ = \frac{\pi}{4} - \frac{1}{2} \cos^{- 1} x \left( \text{ Using x }= \cos2\theta \right)\]
Differentiate it with respect to x,
\[\frac{d y}{d x} = 0 - \frac{1}{2}\left( \frac{- 1}{\sqrt{1 - x^2}} \right)\]
\[ \therefore \frac{d y}{d x} = \frac{1}{2\sqrt{1 - x^2}}\]
APPEARS IN
RELATED QUESTIONS
If the sum of the lengths of the hypotenuse and a side of a right triangle is given, show that the area of the triangle is maximum, when the angle between them is 60º.
Differentiate \[\tan \left( e^{\sin x }\right)\] ?
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\], prove that \[2 x\frac{dy}{dx} = \sqrt{x} - \frac{1}{\sqrt{x}}\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{\sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?
Differentiate \[\tan^{- 1} \left( \frac{2 a^x}{1 - a^{2x}} \right), a > 1, - \infty < x < 0\] ?
Differentiate the following with respect to x:
\[\cos^{- 1} \left( \sin x \right)\]
Find \[\frac{dy}{dx}\] in the following case \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] ?
Find \[\frac{dy}{dx}\] in the following case \[\sin xy + \cos \left( x + y \right) = 1\] ?
If \[x y^2 = 1,\] prove that \[2\frac{dy}{dx} + y^3 = 0\] ?
If \[\tan \left( x + y \right) + \tan \left( x - y \right) = 1, \text{ find} \frac{dy}{dx}\] ?
Differentiate \[\left( 1 + \cos x \right)^x\] ?
Differentiate \[\left( \sin x \right)^{\cos x}\] ?
Differentiate \[x^\left( \sin x - \cos x \right) + \frac{x^2 - 1}{x^2 + 1}\] ?
Find \[\frac{dy}{dx}\] \[y = x^{\sin x} + \left( \sin x \right)^x\] ?
If \[x^{13} y^7 = \left( x + y \right)^{20}\] prove that \[\frac{dy}{dx} = \frac{y}{x}\] ?
If \[x^{16} y^9 = \left( x^2 + y \right)^{17}\] ,prove that \[x\frac{dy}{dx} = 2 y\] ?
If \[\left( \sin x \right)^y = \left( \cos y \right)^x ,\], prove that \[\frac{dy}{dx} = \frac{\log \cos y - y cot x}{\log \sin x + x \tan y}\] ?
If \[xy = e^{x - y} , \text{ find } \frac{dy}{dx}\] ?
Find \[\frac{dy}{dx}\] ,when \[x = \frac{e^t + e^{- t}}{2} \text{ and } y = \frac{e^t - e^{- t}}{2}\] ?
Find \[\frac{dy}{dx}\] , when \[x = \frac{3 at}{1 + t^2}, \text{ and } y = \frac{3 a t^2}{1 + t^2}\] ?
If \[x = 10 \left( t - \sin t \right), y = 12 \left( 1 - \cos t \right), \text { find } \frac{dy}{dx} .\] ?
Differentiate\[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right)\] with respect to \[\sin^{-1} \left( \frac{2x}{1 + x^2} \right)\], If \[- 1 < x < 1, x \neq 0 .\] ?
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right), \text { if }- \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?
If \[x = a \cos^3 \theta, y = a \sin^3 \theta, \text { then } \sqrt{1 + \left( \frac{dy}{dx} \right)^2} =\] ____________ .
If \[\sin \left( x + y \right) = \log \left( x + y \right), \text { then } \frac{dy}{dx} =\] ___________ .
Find the second order derivatives of the following function x cos x ?
If x = a cos θ, y = b sin θ, show that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?
If x = sin t, y = sin pt, prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?
If y = (tan−1 x)2, then prove that (1 + x2)2 y2 + 2x(1 + x2)y1 = 2 ?
If y = ae2x + be−x, show that, \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\] ?
If y = 500 e7x + 600 e−7x, show that \[\frac{d^2 y}{d x^2} = 49y\] ?
If y = x + ex, find \[\frac{d^2 x}{d y^2}\] ?
If \[y = \left| \log_e x \right|\] find\[\frac{d^2 y}{d x^2}\] ?
If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =
If x = sin t and y = sin pt, prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] .
If p, q, r, s are real number and pr = 2(q + s) then for the equation x2 + px + q = 0 and x2 + rx + s = 0 which of the following statement is true?