English

RD Sharma solutions for Mathematics [English] Class 12 chapter 11 - Differentiation [Latest edition]

Advertisements

Chapters

RD Sharma solutions for Mathematics [English] Class 12 chapter 11 - Differentiation - Shaalaa.com
Advertisements

Solutions for Chapter 11: Differentiation

Below listed, you can find solutions for Chapter 11 of CBSE, Karnataka Board PUC RD Sharma for Mathematics [English] Class 12.


Exercise 11.01Exercise 11.02Exercise 11.03Exercise 11.04Exercise 11.05Exercise 11.06Exercise 11.07Exercise 11.08Exercise 11.09Exercise 11.10
Exercise 11.01 [Page 17]

RD Sharma solutions for Mathematics [English] Class 12 11 Differentiation Exercise 11.01 [Page 17]

Exercise 11.01 | Q 1 | Page 17

Differentiate the following functions from first principles e−x.

Exercise 11.01 | Q 2 | Page 17

Differentiate the following functions from first principles e3x.

Exercise 11.01 | Q 3 | Page 17

Differentiate the following functions from first principles eax+b.

Exercise 11.01 | Q 4 | Page 17

Differentiate the following functions from first principles ecos x.

Exercise 11.01 | Q 5 | Page 17

Differentiate the following functions from first principles  e2x.

Exercise 11.01 | Q 6 | Page 17

Differentiate the following functions from first principles log cos x ?

Exercise 11.01 | Q 7 | Page 17

​Differentiate the following function from first principles ecotx .

Exercise 11.01 | Q 8 | Page 17

Differentiate the following functions from first principles x2ex ?

Exercise 11.01 | Q 9 | Page 17

Differentiate the following functions from first principles log cosec x ?

Exercise 11.01 | Q 10 | Page 17

Differentiate the following functions from first principles sin−1 (2x + 3) ?

Exercise 11.02 [Pages 37 - 38]

RD Sharma solutions for Mathematics [English] Class 12 11 Differentiation Exercise 11.02 [Pages 37 - 38]

Exercise 11.02 | Q 1 | Page 37

Differentiate sin (3x + 5) ?

Exercise 11.02 | Q 2 | Page 37

Differentiate tan2 x ?

Exercise 11.02 | Q 3 | Page 37

Differentiate tan (x° + 45°) ?

Exercise 11.02 | Q 4 | Page 37

Differentiate sin (log x) ?

Exercise 11.02 | Q 5 | Page 37

Differentiate esinx ?

Exercise 11.02 | Q 6 | Page 37

Differentiate etan x ?

Exercise 11.02 | Q 7 | Page 37

Differentiate sin2 (2x + 1) ?

Exercise 11.02 | Q 8 | Page 37

Differentiate log7 (2x − 3) ?

Exercise 11.02 | Q 9 | Page 37

Differentiate tan 5x° ?

Exercise 11.02 | Q 10 | Page 37

Differentiate 2x3 ?

Exercise 11.02 | Q 11 | Page 37

Differentiate 3ex ?

Exercise 11.02 | Q 12 | Page 37

Differentiate logx 3 ?

Exercise 11.02 | Q 13 | Page 37

Differentiate 3x2+2x ?

Exercise 11.02 | Q 14 | Page 37

Differentiate a2x2a2+x2 ?

Exercise 11.02 | Q 15 | Page 37

Differentiate 3xlogx ?

Exercise 11.02 | Q 16 | Page 37

Differentiate 1+sinx1sinx ?

Exercise 11.02 | Q 17 | Page 37

Differentiate 1x21+x2 ?

Exercise 11.02 | Q 18 | Page 37

Differentiate (log sin x)?

Exercise 11.02 | Q 19 | Page 37

Differentiate 1+x1x ?

Exercise 11.02 | Q 20 | Page 37

Differentiate sin(1+x21x2) ?

Exercise 11.02 | Q 21 | Page 37

Differentiate e3xcos2x ?

Exercise 11.02 | Q 22 | Page 37

Differentiate sin(log sin x) ?

Exercise 11.02 | Q 23 | Page 37

Differentiate etan3x ?

Exercise 11.02 | Q 24 | Page 37

Differentiate ecotx ?

Exercise 11.02 | Q 25 | Page 37

Differentiate log(sinx1+cosx) ?

Exercise 11.02 | Q 26 | Page 37

Differentiate log1cosx1+cosx ?

Exercise 11.02 | Q 27 | Page 37

Differentiate tan(esinx) ?

Exercise 11.02 | Q 28 | Page 37

Differentiate log(x+x2+1) ?

Exercise 11.02 | Q 29 | Page 37

Differentiate exlogxx2

Exercise 11.02 | Q 30 | Page 37

Differentiate log(cosecxcotx) ?

Exercise 11.02 | Q 31 | Page 37

Differentiate e2x+e2xe2xe2x ?

Exercise 11.02 | Q 32 | Page 37

Differentiate log(x2+x+1x2x+1) ?

Exercise 11.02 | Q 33 | Page 37

Differentiate tan1(ex) ?

Exercise 11.02 | Q 34 | Page 37

Differentiate esin12x ?

Exercise 11.02 | Q 35 | Page 37

Differentiate sin(2sin1x) ?

Exercise 11.02 | Q 36 | Page 37

Differentiate etan1x ?

Exercise 11.02 | Q 37 | Page 37

Differentiate tan1(x2) ?

Exercise 11.02 | Q 38 | Page 37

Differentiate log(tan1x)

Exercise 11.02 | Q 39 | Page 37

Differentiate 2xcosx(x2+3)2 ?

Exercise 11.02 | Q 40 | Page 37

Differentiate xsin2x+5x+kk+(tan2x)3 ?

Exercise 11.02 | Q 41 | Page 37

Differentiate log(3x+2)x2log(2x1) ?

Exercise 11.02 | Q 42 | Page 37

Differentiate 3x2sinx7x2 ?

Exercise 11.02 | Q 43 | Page 37

Differentiate sin2{log(2x+3)} ?

Exercise 11.02 | Q 44 | Page 37

Differentiate  exlogsin2x ?

Exercise 11.02 | Q 45 | Page 37

Differentiate x2+1+x21x2+1x21 ?

Exercise 11.02 | Q 46 | Page 37

Differentiate log[x+2+x2+4x+1]

Exercise 11.02 | Q 47 | Page 37

Differentiate (sin1x4)4 ?

Exercise 11.02 | Q 48 | Page 37

Differentiate sin1(xx2+a2) ?

Exercise 11.02 | Q 49 | Page 37

Differentiate exsinx(x2+2)3 ?

Exercise 11.02 | Q 50 | Page 37

Differentiate 3e3xlog(1+x) ?

Exercise 11.02 | Q 51 | Page 37

Differentiate x2+2cosx ?

Exercise 11.02 | Q 52 | Page 38

Differentiate x2(1x2)cos2x ?

Exercise 11.02 | Q 53 | Page 38

log{cot(π4+x2)} ?

Exercise 11.02 | Q 54 | Page 38

Differentiate eaxsecxtan2x ?

Exercise 11.02 | Q 55 | Page 38

Differentiate log(cosx2) ?

Exercise 11.02 | Q 56 | Page 38

Differentiate cos(logx)2 ?

Exercise 11.02 | Q 57 | Page 38

Differentiate logx1x+1 ?

Exercise 11.02 | Q 58 | Page 38

If y=log{x1x+1} ,show that dydx=12x21 ?

Exercise 11.02 | Q 59 | Page 38

 If y=x+1+x1 , prove that x21dydx=12y ?

Exercise 11.02 | Q 60 | Page 38

If y=xx+2  , prove tha xdydx=(1y)y

Exercise 11.02 | Q 61 | Page 38

If y=log(x+1x)prove that dydx=x12x(x+1) ?

 

Exercise 11.02 | Q 62 | Page 38

If  y=log1+tanx1tanx  prove that dydx=sec2x ?

Exercise 11.02 | Q 63 | Page 38

If y=x+1x, prove that  2xdydx=x1x ?

Exercise 11.02 | Q 64 | Page 38

If y=xsin1x1x2 ,  prove that (1x2)dydx=x+yx ?

Exercise 11.02 | Q 65 | Page 38

If y=exexex+ex .prove that dydx=1y2 ?

Exercise 11.02 | Q 66 | Page 38

If  y=(x1)log(x1)(x+1)log(x+1) , prove that dydc=log(x11+x) ?

Exercise 11.02 | Q 67 | Page 38

If y=excosx ,prove that dydx=2excos(x+π4) ?

Exercise 11.02 | Q 68 | Page 38

If y=12log(1cos2x1+cos2x) , prove that dydx=2cosec 2x ?

Exercise 11.02 | Q 69 | Page 38

If y=xsin1x+1x2 ,prove that dydx=sin1x ?

Exercise 11.02 | Q 70 | Page 38

If y=x2+a2 prove that  ydydxx=0 ?

Exercise 11.02 | Q 71 | Page 38

If y=ex+ex prove that  dydx=y24 ?

Exercise 11.02 | Q 72 | Page 38

If y=a2x2 prove that  ydydx+x=0 ?

Exercise 11.02 | Q 73 | Page 38

If xy = 4, prove that x(dydx+y2)=3y ?

Exercise 11.02 | Q 74 | Page 38

Prove that ddx{x2a2x2+a22sin1xa}=a2x2 ?

Exercise 11.03 [Pages 62 - 64]

RD Sharma solutions for Mathematics [English] Class 12 11 Differentiation Exercise 11.03 [Pages 62 - 64]

Exercise 11.03 | Q 1 | Page 62

Differentiate cos1{2x1x2},12<x<1 ?

Exercise 11.03 | Q 2 | Page 62

Differentiate cos1{1+x2},1<x<1 ?

Exercise 11.03 | Q 3 | Page 63

Differentiate  sin1{1x2},0<x<1  ?

Exercise 11.03 | Q 4 | Page 63

Differentiate sin1{1x2},0<x<1 ?

Exercise 11.03 | Q 5 | Page 63

Differentiate tan1{xa2x2},a<x<a ?

Exercise 11.03 | Q 6 | Page 63

Differentiate sin1{xx2+a2} ?

Exercise 11.03 | Q 7 | Page 63

Differentiate sin1(2x21),0<x<1  ?

Exercise 11.03 | Q 8 | Page 63

Differentiate sin1(12x2),0<x<1 ?

Exercise 11.03 | Q 9 | Page 63

Differentiate cos1{xx2+a2} ?

Exercise 11.03 | Q 10 | Page 63

Differentiate sin1{sinx+cosx2},3π4<x<π4 ?

Exercise 11.03 | Q 11 | Page 63

Differentiate cos1{cosx+sinx2},π4<x<π4 ?

Exercise 11.03 | Q 12 | Page 63

Differentiate tan1{x1+1x2},1<x<1 ?

Exercise 11.03 | Q 13 | Page 63

Differentiate tan1{xa+a2x2},a<x<a ?

Exercise 11.03 | Q 14 | Page 63

Differentiate sin1(x+1x22),1<x<1 ?

Exercise 11.03 | Q 15 | Page 63

Differentiate cos1(x+1x22),1<x<1 ?

Exercise 11.03 | Q 16 | Page 63

Differentiate tan1(4x14x2),12<x<12 ?

Exercise 11.03 | Q 17 | Page 63

Differentiate tan1(2x+114x),<x<0 ?

Exercise 11.03 | Q 18 | Page 63

Differentiate tan1(2ax1a2x),a>1,<x<0 ?

Exercise 11.03 | Q 19 | Page 63

Differentiate sin1{1+x+1x2},0<x<1 ?

Exercise 11.03 | Q 20 | Page 63

Differentiate tan1(1+a2x21ax),x0 ?

Exercise 11.03 | Q 21 | Page 63

Differentiate tan1(sinx1+cosx),π<x<π ?

Exercise 11.03 | Q 22 | Page 63

Differentiate sin1(11+x2) ?

Exercise 11.03 | Q 23 | Page 63

Differentiate cos1(1x2n1+x2n),<x< ?

Exercise 11.03 | Q 24 | Page 63

Differentiate sin1(1x21+x2)+sec1(1+x21x2),xR ?

Exercise 11.03 | Q 25 | Page 63

Differentiate tan1(a+x1ax) ?

Exercise 11.03 | Q 26 | Page 63

Differentiate  tan1(x+a1xa) ?

Exercise 11.03 | Q 27 | Page 63

Differentiate tan1(a+btanxbatanx) ?

Exercise 11.03 | Q 28 | Page 63

Differentiate tan1(a+bxbax) ?

Exercise 11.03 | Q 29 | Page 63

 Differentiate tan1(xax+a) ?

Exercise 11.03 | Q 30 | Page 63

Differentiate tan1(x1+6x2) ?

Exercise 11.03 | Q 31 | Page 64

Differentiate tan1(5x16x2),16<x<16 ?

Exercise 11.03 | Q 32 | Page 63

Differentiate 

tan1(cosx+sinxcosxsinx),π4<x<π4 ?

Exercise 11.03 | Q 33 | Page 64

Differentiate tan1{x1/3+a1/31(ax)1/3} ?

Exercise 11.03 | Q 34 | Page 64

Differentiate sin1(11+x2) with respect to x.

Exercise 11.03 | Q 35 | Page 64

If  y=sin1(2x1+x2)+sec1(1+x21x2),0<x<1, prove that  dydx=41+x2 ?

 

Exercise 11.03 | Q 36 | Page 64

If y=sin1(x1+x2)+cos1(11+x2),0<x< prove that  dydx=21+x2 ?

 

Exercise 11.03 | Q 37.1 | Page 64

Differentiate the following with respect to x

cos1(sinx)

Exercise 11.03 | Q 37.2 | Page 64

Differentiate the following with respect to x

cot1(1x1+x)

Exercise 11.03 | Q 38 | Page 64

If  y=cot1{1+sinx+1sinx1+sinx1sinx},  show that dydx is independent of x. ? 

 

Exercise 11.03 | Q 39 | Page 64

If y=tan1(2x1x2)+sec1(1+x21x2),x>0 ,prove that dydx=41+x2

Exercise 11.03 | Q 40 | Page 64

If  y=sec1(x+1x1)+sin1(x1x+1),x>0. Finddydx ?

 

Exercise 11.03 | Q 41 | Page 64

If y=sin[2tan1{1x1+x}], find dydx ?

Exercise 11.03 | Q 42 | Page 64

If  y=cos1(2x)+2cos114x2,0<x<12, find dydx. ?

Exercise 11.03 | Q 43 | Page 64

If the derivative of tan−1 (a + bx) takes the value 1 at x = 0, prove that 1 + a2 = b ?

Exercise 11.03 | Q 44 | Page 64

If y=cos1(2x)+2cos114x2,12<x<0, find dydx ?

Exercise 11.03 | Q 45 | Page 64

If y=tan1(1+x1x1+x+1x),find dydx ?

Exercise 11.03 | Q 46 | Page 64

If y=cos1{2x31x213}, find dydx ?

Exercise 11.03 | Q 47 | Page 64

Differentiate sin1{2x+13x1+(36)x}  with respect to x ?

Exercise 11.03 | Q 48 | Page 64

If y=sin1(6x19x2),132<x<132 dydx ?

Exercise 11.04 [Pages 74 - 75]

RD Sharma solutions for Mathematics [English] Class 12 11 Differentiation Exercise 11.04 [Pages 74 - 75]

Exercise 11.04 | Q 1 | Page 74

Find dydx in the following case xy=c2  ?

Exercise 11.04 | Q 2 | Page 74

Find  dydx in the following case: y33xy2=x3+3x2y ?

 

Exercise 11.04 | Q 3 | Page 74

Find  dydx in the following case  x2/3+y2/3=a2/3 ?

 

Exercise 11.04 | Q 4 | Page 74

Find  dydx in the following case 4x+3y=log(4x3y) ?

 

Exercise 11.04 | Q 5 | Page 74

Find  dydx in the following case x2a2+y2b2=1 ?

Exercise 11.04 | Q 6 | Page 74

Find  dydx in the following case x5+y5=5xy ?

 

Exercise 11.04 | Q 7 | Page 74

Find  dydx in the following case (x+y)2=2axy ?

 

Exercise 11.04 | Q 8 | Page 74

Find  dydx in the following case (x2+y2)2=xy ?

 

Exercise 11.04 | Q 9 | Page 74

Find  dydx in the following case tan1(x2+y2)=a ?

 

Exercise 11.04 | Q 10 | Page 74

Find  dydx in the following case exy=log(xy) ?

 

Exercise 11.04 | Q 11 | Page 74

Find  dydx in the following case sinxy+cos(x+y)=1 ?

 

Exercise 11.04 | Q 12 | Page 74

If 1x2+1y2=a(xy) , prove that dydx=1y21x2 ?

Exercise 11.04 | Q 13 | Page 75

If y1x2+x1y2=1 ,prove that dydx=1y21x2 ?

Exercise 11.04 | Q 14 | Page 75

If xy=1 prove that dydx+y2=0 ?

Exercise 11.04 | Q 15 | Page 75

If xy2=1, prove that 2dydx+y3=0 ?

Exercise 11.04 | Q 16 | Page 75

If x1+y+y1+x=0 , prove that (1+x)2dydx+1=0  ?

Exercise 11.04 | Q 17 | Page 75

If logx2+y2=tan1(yx) Prove that dydx=x+yxy ?

Exercise 11.04 | Q 18 | Page 75

If sec(x+yxy)=a Prove that  dydx=yx ?

Exercise 11.04 | Q 19 | Page 75

If tan1(x2y2x2+y2)=a Prove that  dydx=xy(1tana)(1+tana) ?

Exercise 11.04 | Q 20 | Page 75

If xylog(x+y)=1 ,Prove that dydx=y(x2y+x+y)x(xy2+x+y) ?

Exercise 11.04 | Q 21 | Page 75

If y=xsin(a+y) ,Prove that dydx=sin2(a+y)sin(a+y)ycos(a+y) ?

Exercise 11.04 | Q 22 | Page 75

If xsin(a+y)+sinacos(a+y)=0 Prove that dydx=sin2(a+y)sina ?

Exercise 11.04 | Q 23 | Page 75

If y=xsiny , Prove that dydx=siny(1xcosy) ?

Exercise 11.04 | Q 24 | Page 75

If yx2+1=log(x2+1x) ,Show that (x2+1)dydx+xy+1=0 ?

Exercise 11.04 | Q 25 | Page 75

If sin(xy)+yx=x2y2, finddydx ?

Exercise 11.04 | Q 26 | Page 75

If  tan(x+y)+tan(xy)=1, finddydx ?

Exercise 11.04 | Q 27 | Page 75

If ex+ey=ex+y, prove that dydx=ex(ey1)ey(ex1)ordydx+eyx=0 ?

Exercise 11.04 | Q 28 | Page 75

If cosy=xcos(a+y), with cosa±1, prove that dydx=cos2(a+y)sina ?

Exercise 11.04 | Q 29 | Page 75

If sin2y+cosxy=k, find  dydx at x=1, y=π4. 

Exercise 11.04 | Q 30 | Page 75

If y={logcosxsinx}{logsinxcosx}1+sin1(2x1+x2), find dydx at x=π4 ?

Exercise 11.04 | Q 31 | Page 75

If y+x+yx=c,show that dydx=yxy2x21 ?

Exercise 11.05 [Pages 88 - 90]

RD Sharma solutions for Mathematics [English] Class 12 11 Differentiation Exercise 11.05 [Pages 88 - 90]

Exercise 11.05 | Q 1 | Page 88

Differentiate x1/x  with respect to x.

Exercise 11.05 | Q 2 | Page 88

Differentiate xsinx  ?

Exercise 11.05 | Q 3 | Page 88

Differentiate (1+cosx)x ?

Exercise 11.05 | Q 4 | Page 88

Differentiate xcos1x ?

Exercise 11.05 | Q 5 | Page 88

Differentiate (logx)x ?

Exercise 11.05 | Q 6 | Page 88

Differentiate (logx)cosx ?

Exercise 11.05 | Q 7 | Page 88

Differentiate (sinx)cosx ?

Exercise 11.05 | Q 8 | Page 88

Differentiate exlogx ?

Exercise 11.05 | Q 9 | Page 88

Differentiate  (sinx)logx ?

Exercise 11.05 | Q 10 | Page 88

Differentiate 10logsinx ?

Exercise 11.05 | Q 11 | Page 88

Differentiate (logx)logx ?

Exercise 11.05 | Q 12 | Page 88

Differentiate 10(10x) ?

Exercise 11.05 | Q 13 | Page 88

Differentiate  sin(xx) ?

Exercise 11.05 | Q 14 | Page 88

Differentiate (sin1x)x ?

Exercise 11.05 | Q 15 | Page 88

Differentiate xsin1x  ?

Exercise 11.05 | Q 16 | Page 88

Differentiate (tanx)1/x ?

Exercise 11.05 | Q 17 | Page 88

Differentiate xtan1x  ?

Exercise 11.05 | Q 18.1 | Page 88

Differentiate  (xx)x ?

Exercise 11.05 | Q 18.2 | Page 88

Differentiate x(sinxcosx)+x21x2+1 ?

Exercise 11.05 | Q 18.3 | Page 88

Differentiate  xxcosx+x2+1x21  ?

Exercise 11.05 | Q 18.4 | Page 88

Differentiate (xcosx)x+(xsinx)1/x ?

Exercise 11.05 | Q 18.5 | Page 88

Differentiate(x+1x)x+x(1+1x) ?

Exercise 11.05 | Q 18.6 | Page 88

Differentiate esinx+(tanx)x ?

Exercise 11.05 | Q 18.7 | Page 88

Differentiate (cosx)x+(sinx)1/x ?

Exercise 11.05 | Q 18.8 | Page 88

Differentiate  xx23+(x3)x2 ?

Exercise 11.05 | Q 19 | Page 89

Find  dydx y=ex+10x+xx ?

 

Exercise 11.05 | Q 20 | Page 89
Find dydx  y=xn+nx+xx+nn ?
Exercise 11.05 | Q 21 | Page 89

find  dydx  y=(x21)3(2x1)(x3)(4x1) ?

 

Exercise 11.05 | Q 22 | Page 89

Find  dydx  y=eaxsecxlogx12x ?

 

Exercise 11.05 | Q 23 | Page 89

Find  dydx y=e3xsin4x2x ?

 

Exercise 11.05 | Q 24 | Page 89

Find  dydx y=sinxsin2xsin3xsin4x ?

 

Exercise 11.05 | Q 25 | Page 89

Find  dydx y=xsinx+(sinx)x ?

Exercise 11.05 | Q 26 | Page 89

Find  dydx  y=(sinx)cosx+(cosx)sinx ?

 

Exercise 11.05 | Q 27 | Page 89

Find dydx y=(tanx)cotx+(cotx)tanx ?

Exercise 11.05 | Q 28 | Page 89

If y=(sinx)x+sin-1x then find dydx 

Exercise 11.05 | Q 29.1 | Page 89

Find dydx y=xcosx+(sinx)tanx ?

Exercise 11.05 | Q 29.2 | Page 89

Find dydx  y=xx+(sinx)x ?

Exercise 11.05 | Q 30 | Page 89

Find dydx y=(tanx)logx+cos2(π4) ?

Exercise 11.05 | Q 31 | Page 89

Find dydx

y=xx+x1/x ?

Exercise 11.05 | Q 32 | Page 89

Find dydx y=xlogx+(logx)x ?

Exercise 11.05 | Q 33 | Page 89

If x13y7=(x+y)20 prove that dydx=yx ?

Exercise 11.05 | Q 34 | Page 89

If x16y9=(x2+y)17 ,prove that xdydx=2y ?

Exercise 11.05 | Q 35 | Page 89

If y=sin(xx) prove that  dydx=cos(xx)xx(1+logx) ?

Exercise 11.05 | Q 36 | Page 89

If xx+yx=1, prove that dydx={xx(1+logx)+yxlogyxy(x1)} ?

Exercise 11.05 | Q 37 | Page 89

If xyyx=1 , prove that dydx=y(y+xlogy)x(ylogx+x) ?

Exercise 11.05 | Q 38 | Page 89

If xy+yx=(x+y)x+y, find dydx ?

Exercise 11.05 | Q 39 | Page 89

If xmyn=1 , prove that dydx=mynx ?

Exercise 11.05 | Q 40 | Page 89

If yx=eyx ,prove that dydx=(1+logy)2logy ?

Exercise 11.05 | Q 41 | Page 89

If (sinx)y=(cosy)x,, prove that dydx=logcosyycotxlogsinx+xtany ?

Exercise 11.05 | Q 42 | Page 89

If (cosx)y=(tany)x , prove that dydx=logtany+ytanxlogcosxxsecy cosec y ?

Exercise 11.05 | Q 43 | Page 89

If ex+ey=ex+y , prove that

dydx+eyx=0 ?

Exercise 11.05 | Q 44 | Page 90

If ey=yx, prove thatdydx=(logy)2logy1 ?

Exercise 11.05 | Q 45 | Page 90

If ex+yx=0 ,prove that dydx=1xx ?

Exercise 11.05 | Q 46 | Page 90

If y=xsin(a+y) , prove that dydx=sin2(a+y)sin(a+y)ycos(a+y) ?

 

Exercise 11.05 | Q 47 | Page 90

If  xsin(a+y)+sinacos(a+y)=0 , prove that dydx=sin2(a+y)sina ?

 

Exercise 11.05 | Q 48 | Page 90

If  (sinx)y=x+y , prove that dydx=1(x+y)ycotx(x+y)logsinx1 ?

 

Exercise 11.05 | Q 49 | Page 90

If xylog(x+y)=1 , prove that  dydx=y(x2y+x+y)x(xy2+x+y) ?

Exercise 11.05 | Q 50 | Page 90

If y=xsiny , prove that  dydx=yx(1xcosy) ?

 

Exercise 11.05 | Q 51 | Page 90

Find the derivative of the function f (x) given by  f(x)=(1+x)(1+x2)(1+x4)(1+x8) and hence find f(1) ?

 

Exercise 11.05 | Q 52 | Page 90

If y=logx2+x+1x2x+1+23tan1(3x1x2), find dydx. ?

Exercise 11.05 | Q 53 | Page 90

If y=(sinxcosx)sinxcosx,π4<x<3π4, finddydx ?

Exercise 11.05 | Q 54 | Page 90

If  xy=exy, find dydx ?

 

Exercise 11.05 | Q 55 | Page 90

If yx+xy+xx=ab ,find dydx ?

Exercise 11.05 | Q 56 | Page 90

If  (cosx)y=(cosy)x, find dydx ?

 

Exercise 11.05 | Q 57 | Page 90
 If cosy=xcos(a+y), where cosa±1, prove that dydx=cos2(a+y)sina ?
Exercise 11.05 | Q 58 | Page 90
 If (xy)exxy=a, prove that y dydx+x=2y ?
Exercise 11.05 | Q 59 | Page 90
 If x=ex/y, prove that dydx=xyxlogx ?
Exercise 11.05 | Q 60 | Page 90
 If y=xtanx+x2+12, finddydx ?

 

Exercise 11.05 | Q 61 | Page 90
If y=1+α(1xα)+β/x(1xα)(1xβ)+γ/x2(1xα)(1xβ)(1xγ), find dydx is:
  • y(αα-x+ββ-x+γγ-x)

  • yx(α1x-α+β1x-β+γ1x-γ)

  • y(α1x-α+β1x-β+γ1x-γ)

  • yx(αx1x-α+βx1x-β+γx1x-γ)

Exercise 11.06 [Pages 98 - 99]

RD Sharma solutions for Mathematics [English] Class 12 11 Differentiation Exercise 11.06 [Pages 98 - 99]

Exercise 11.06 | Q 1 | Page 98

If y=x+x+x+...to, prove that dydx=12y1 ?

Exercise 11.06 | Q 2 | Page 98

If y=cosx+cosx+cosx+...to , prove that dydx=sinx12y ?

Exercise 11.06 | Q 3 | Page 98

If  y=logx+logx+logx+...to, prove that (2y1)dydx=1x ?

 

Exercise 11.06 | Q 4 | Page 98

If  y=tanx+tanx+tanx+..to , prove that dydx=sec2x2y1 ?

 

Exercise 11.06 | Q 5 | Page 98

y=(sinx)(sinx)(sinx)...,prove that y2cotx(1ylogsinx) ?

Exercise 11.06 | Q 6 | Page 98

If y=(tanx)(tanx)(tanx)..., prove that dydx=2 at x=π4 ?

 

Exercise 11.06 | Q 7 | Page 99

If y=exex+xeex+exxe, prove that  dydx=exexxex{exx+exlogx}+xeexeex{1x+exlogx}+exxexxexe1{x+elogx}

 

Exercise 11.06 | Q 8 | Page 99

If y=(cosx)(cosx)(cosx)...,prove that dydx=y2tanx(1ylogcosx)?

 

Exercise 11.07 [Pages 103 - 104]

RD Sharma solutions for Mathematics [English] Class 12 11 Differentiation Exercise 11.07 [Pages 103 - 104]

Exercise 11.07 | Q 1 | Page 103

Find dydx, when x=at2 and y=2 at ?

Exercise 11.07 | Q 2 | Page 103

Find dydx, When x=a(θ+sinθ) and y=a(1cosθ) ?

Exercise 11.07 | Q 3 | Page 103

If dydx when x=acosθ and y=bsinθ ?

Exercise 11.07 | Q 4 | Page 103

Find dydx,when x=aeθ(sinθcosθ),y=aeθ(sinθ+cosθ) ?

Exercise 11.07 | Q 5 | Page 103

Find dydx , when x=bsin2θ and y=acos2θ ?

Exercise 11.07 | Q 6 | Page 103

Find dydx ,When x=a(1cosθ) and y=a(θ+sinθ) at θ=π2 ?

Exercise 11.07 | Q 7 | Page 103

Find dydx ,when x=et+et2 and y=etet2 ?

Exercise 11.07 | Q 8 | Page 103

Find dydx , when x=3at1+t2, and y=3at21+t2 ?

Exercise 11.07 | Q 9 | Page 103

Find dydx, when x=a(cosθ+θsinθ) and y=a(sinθθcosθ) ?

Exercise 11.07 | Q 10 | Page 103

Find dydx ,When x=eθ(θ+1θ) and y=eθ(θ1θ) ?

Exercise 11.07 | Q 11 | Page 103

Find dydx when x=2t1+t2 and y=1t21+t2 ?

Exercise 11.07 | Q 12 | Page 103

Find dydx , when  x=cos111+t2 and y =sin1t1+t2,tR ?

Exercise 11.07 | Q 13 | Page 103

Find  dydx , when  x=1t21+t2 and y =2t1+t2 ?

 

Exercise 11.07 | Q 14 | Page 103

If  x=2cosθcos2θ and y=2sinθsin2θ, prove that dydx=tan(3θ2) ?

Exercise 11.07 | Q 15 | Page 103

If x=ecos2t and y =esin2t, prove that dydx=ylogxxlogy ?

Exercise 11.07 | Q 16 | Page 103

If x=cost and y =sint, prove that  dydx=13 at t=2π3 ?

 

Exercise 11.07 | Q 17 | Page 103

If  x=a(t+1t) and y =a(t1t) ,prove that  dydx=xy?

 

Exercise 11.07 | Q 18 | Page 103
If x=sin1(2t1+t2) and y =tan1(2t1t2),1<t<1 porve that dydx=1 ?

 

Exercise 11.07 | Q 19 | Page 103

If  x=sin3tcos2t,y=cos3tcost2t , finddydx ?

 

Exercise 11.07 | Q 20 | Page 103

If x=(t+1t)a,y=at+1t, find dydx ?

Exercise 11.07 | Q 21 | Page 103

If x=a(1+t21t2) and y =2t1t2, find dydx ?

Exercise 11.07 | Q 22 | Page 104

If x=10(tsint),y=12(1cost), find dydx. ?

 

Exercise 11.07 | Q 23 | Page 104

If x=a(θsinθ)and,y=a(1+cosθ), find dydx at θ=π3 ?

 

Exercise 11.07 | Q 24 | Page 104

If  x=asin2t(1+cos2t) and y =bcos2t(1cos2t) , show that at  t=π4,dydx=ba ?

Exercise 11.07 | Q 25 | Page 104

 If x=cost(32cos2t),y=sint(32sin2t) find the value of dydx at t=π4 ?

Exercise 11.07 | Q 26 | Page 104

If  x=1+logtt2,y=3+2logtt, find dydx ?

Exercise 11.07 | Q 27 | Page 104
sinx=2t1+t2,tany=2t1t2, find dydx ?
Exercise 11.07 | Q 28 | Page 104

Write the derivative of sinx with respect to cos x ?

Exercise 11.08 [Pages 112 - 113]

RD Sharma solutions for Mathematics [English] Class 12 11 Differentiation Exercise 11.08 [Pages 112 - 113]

Exercise 11.08 | Q 1 | Page 112

Differentiate x2 with respect to x3

Exercise 11.08 | Q 2 | Page 112

Differentiate log (1 + x2) with respect to tan−1 x ?

Exercise 11.08 | Q 3 | Page 112

Differentiate (log x)x with respect to log x ?

Exercise 11.08 | Q 4.1 | Page 112

Differentiate  sin11x2 with respect to cos1x, ifx(0,1)  ?

 

Exercise 11.08 | Q 4.2 | Page 112

Differentiate  sin11x2 with respect to cos1x, if x(1,0) ?

Exercise 11.08 | Q 5.1 | Page 112
Differentiate sin1(4x14x2) with respect to 14x2 , if x(122,122) ?
Exercise 11.08 | Q 5.2 | Page 112

Differentiate sin1(4x14x2) with respect to 14x2 , if x(122,12) ?

Exercise 11.08 | Q 5.3 | Page 112

Differentiate sin1(4x14x2) with respect to 14x2 , if x(12,122) ?

Exercise 11.08 | Q 6 | Page 112

Differentiatetan1(1+x21x) with respect to sin1(2x1+x2), If 1<x<1,x0. ?

Exercise 11.08 | Q 7.1 | Page 112

Differentiate sin1(2x1x2) with respect to  sec1(11x2), if x(0,12) ?

Exercise 11.08 | Q 7.2 | Page 112

Differentiate sin1(2x1x2) with respect to  sec1(11x2), if x(12,1) ?

Exercise 11.08 | Q 8 | Page 112

Differentiate (cosx)sinx with respect to (sinx)cosx?

Exercise 11.08 | Q 9 | Page 112

Differentiate sin1(2x1+x2) with respect to cos1(1x21+x2), if 0<x<1 ?

Exercise 11.08 | Q 10 | Page 113

Differentiate tan1(1+ax1ax) with respect to 1+a2x2 ?

Exercise 11.08 | Q 11 | Page 113

Differentiate sin1(2x1x2) with respect to tan1(x1x2), if 12<x<12 ?

Exercise 11.08 | Q 12 | Page 113

Differentiate tan1(2x1x2) with respect to cos1(1x21+x2), if 0<x<1 ?

Exercise 11.08 | Q 13 | Page 113

Differentiate tan1(x1x+1) with respect to sin1(3x4x3), if 12<x<12 ?

Exercise 11.08 | Q 14 | Page 113

Differentiate tan1(cosx1+sinx) with  respect to sec1x ?

Exercise 11.08 | Q 15 | Page 113

Differentiate sin1(2x1+x2) with respect to tan1(2x1x2), if 1<x<1 ?

Exercise 11.08 | Q 16 | Page 113

Differentiate cos1(4x33x) with respect to tan1(1x2x), if 12<x<1

Exercise 11.08 | Q 17 | Page 113

Differentiate tan1(x1x2) with respect to sin1(2x1x2), if 12<x<12 ?

Exercise 11.08 | Q 18 | Page 113

sin11x2 with respect to cot1(x1x2), if 0<x<1

Exercise 11.08 | Q 19 | Page 113

Differentiate sin1(2ax1a2x2) with respect to 1a2x2, if 12<ax<12 ?

Exercise 11.08 | Q 20 | Page 113

Differentiate tan1(1x1+x) with respect to 1x2,if1<x<1 ?

Exercise 11.09 [Pages 117 - 118]

RD Sharma solutions for Mathematics [English] Class 12 11 Differentiation Exercise 11.09 [Pages 117 - 118]

Exercise 11.09 | Q 1 | Page 117

If f (x) = loge (loge x), then write the value of f(e) ?

Exercise 11.09 | Q 2 | Page 117

If f(x)=x+1 , then write the value of ddx(fof)(x) ?

Exercise 11.09 | Q 3 | Page 117

If f(1)=2 and y =f(logex), finddydx at x=e ?

Exercise 11.09 | Q 4 | Page 117

If f(1)=4,f(1)=2 find the value of the derivative of  log(f(ex)) w.r. to x at the point x = 0 ?

 

Exercise 11.09 | Q 5 | Page 117

If f(x)=2x21 and y =f(x2) then find dydx at x=1 ?

Exercise 11.09 | Q 6 | Page 117

Let g (x) be the inverse of an invertible function f (x) which is derivable at x = 3. If f (3) = 9 and f(3)=9, write the value of g(9).

Exercise 11.09 | Q 7 | Page 117

If y=sin1(sinx),π2xπ2 ,Then, write the value of dydx for x(π2,π2) ?

Exercise 11.09 | Q 8 | Page 117

If π2x3π2 and y =sin1(sinx), find dydx ?

Exercise 11.09 | Q 9 | Page 117

If πx2π and y =cos1(cosx), find dydx ?

Exercise 11.09 | Q 10 | Page 118

If y=sin1(2x1+x2) write the value of dydx for x>1 ?

Exercise 11.09 | Q 11 | Page 118

If f(0)=f(1)=0,f(1)=2 and y =f(ex)ef(x) write the value of dydx at x =0 ?

Exercise 11.09 | Q 12 | Page 118

If y=x|x| , find dydx for x<0 ?

Exercise 11.09 | Q 13 | Page 118

If y=sin1x+cos1x ,find dydx ?

Exercise 11.09 | Q 14 | Page 118

If x=a(θ+sinθ),y=a(1+cosθ), finddydx ?

Exercise 11.09 | Q 15 | Page 118

If π2<x<0 and y =tan11cos2x1+cos2x, find dydx ?

Exercise 11.09 | Q 16 | Page 116

If y=xx, find dydx at x=e ?

Exercise 11.09 | Q 17 | Page 118

If y=tan1(1x1+x), finddydx  ?

Exercise 11.09 | Q 18 | Page 118

If y=logax, find dydx

Exercise 11.09 | Q 19 | Page 118

If y=logtanx, write dydx ?

Exercise 11.09 | Q 20 | Page 118

If y=sin1(1x21+x2)+cos1(1x21+x2), find dydx ?

Exercise 11.09 | Q 21 | Page 118

If y=sec1(x+1x1)+sin1(x1x+1) then write the value of dydx ?

Exercise 11.09 | Q 22 | Page 118

If |x|<1 and y=1+x+x2+..  to ∞, then find the value of  dydx ?

Exercise 11.09 | Q 23 | Page 118

If u=sin1(2x1+x2) and v=tan1(2x1x2) where 1<x<1, then write the value of dudv ?

Exercise 11.09 | Q 24 | Page 118

If f(x)=log{u(x)v(x)},u(1)=v(1) and u(1)=v(1)=2 , then find the value of f(1) ?

Exercise 11.09 | Q 25 | Page 118

If y=log|3x|,x0, find dydx

Exercise 11.09 | Q 26 | Page 118

If f (x) is an even function, then write whether f(x) is even or odd ?

Exercise 11.09 | Q 27 | Page 118

If f (x) is an odd function, then write whether f(x) is even or odd ?

Exercise 11.09 | Q 28 | Page 118

If x=3sintsin3t,y=3costcos3t find dydx at t=π3 ?

Exercise 11.10 [Pages 119 - 122]

RD Sharma solutions for Mathematics [English] Class 12 11 Differentiation Exercise 11.10 [Pages 119 - 122]

Exercise 11.10 | Q 1 | Page 119

If f (x) = logx2 (log x), the f(x) at x = e is ____________ .

  • 0

  • 1

  • 1/e

  • 1/2e

Exercise 11.10 | Q 2 | Page 119

The differential coefficient of f (log x) w.r.t. x, where f (x) = log x is ___________ .

  • xlogx

  • logxx

  • (xlogx)1

  • none of these

Exercise 11.10 | Q 3 | Page 119

The derivative of the function cot1|(cos2x)1/2| at x=π/6 is  ______ .

  • (2/3)1/2

  • (1/3)1/2

  • 31/2

  • 61/2

Exercise 11.10 | Q 4 | Page 119

Differential coefficient of sec(tan−1 x) is ______.

  • x1+x2

  • x1+x2

  • 11+x2

  • x1+x2

Exercise 11.10 | Q 5 | Page 119

If f(x)=tan11+sinx1sinx,0xπ/2, then f(π/6) is  _________ .

  • − 1/4

  • − 1/2

  • 1/4

  • 1/2

Exercise 11.10 | Q 6 | Page 119

If y=(1+1x)x, thendydx= ____________ .

  • (1+1x)x(1+1x)1x+1

  • (1+1x)xlog(1+1x)

  • (x+1x)x{log(x+1)xx+1}

  • (x+1x)x{log(1+1x)+1x+1}

Exercise 11.10 | Q 7 | Page 119

If xy=exy, then dydx is __________ .

  • 1+x1+logx

  • 1logx1+logx

  • not defined

  • logx(1+logx)2

Exercise 11.10 | Q 8 | Page 119

Given  f(x)=4x8, then  _________________ .

  • f(12)=f(12)

  • f(12)=f(12)

  • f(12)=f(12)

  • f(12)=f(12)

Exercise 11.10 | Q 9 | Page 119

If x=acos3θ,y=asin3θ, then 1+(dydx)2= ____________ .

  • tan2θ

  • sec2θ

  • secθ

  • |secθ|

Exercise 11.10 | Q 10 | Page 120

If y=sin1(1x21+x2), then dydx= _____________ .

  • 21+x2

  • 21+x2

  • 12x2

  • 22x2

Exercise 11.10 | Q 11 | Page 120

The derivative of sec1(12x2+1) w . r . t .1+3x at x=1/3

  • does not exist

  • 0

  • 1/2

  • 1/3

Exercise 11.10 | Q 12 | Page 120

For the curve x+y=1,dydx at (1/4,1/4) is  _____________ .

  • 1/2

  • 1

  • -1

  • 2

Exercise 11.10 | Q 13 | Page 120

If sin(x+y)=log(x+y), then dydx= ___________ .

  • 2

  • -2

  • 1

  • -1

Exercise 11.10 | Q 14 | Page 120

Let  =sin1(2x1+x2) and V=tan1(2x1x2), then ddV= ____________ .

  • 1/2

  • x

  • 1x2x24

  • 1

Exercise 11.10 | Q 15 | Page 120

ddx{tan1(cosx1+sinx)} equals  ______________ .

  • 1/2

  • -1/2

  • 1

  • -1

Exercise 11.10 | Q 16 | Page 120
ddx[log{ex(x2x+2)3/4}] equals ___________ .
  • x21x24

  • 1

  • x2+1x24

  • exx21x24

Exercise 11.10 | Q 17 | Page 120

If y=sinx+y, then dydx= __________ .

  • sinx2y1

  • sinx12y

  • cosx12y

  • cosx2y1

Exercise 11.10 | Q 18 | Page 120

If 3sin(xy)+4cos(xy)=5, then dydx= _____________ .

  • yx

  • 3sin(xy)+4cos(xy)3cos(xy)4sin(xy)

  • 3cos(xy)+4sin(xy)4cos(xy)3sin(xy)

  • none of these

Exercise 11.10 | Q 19 | Page 120

If siny=xsin(a+y), then dydx is ____________ .

  • sinasinasin2(a+y)

  • sin2(a+y)sina

  • sinasin2(a+y)

  • sin2(ay)sina

Exercise 11.10 | Q 20 | Page 121

The derivative of cos1(2x21) with respect to  cos1x  is ___________ .

  • 2

  • 121x2

  • 2/x

  • 1x2

Exercise 11.10 | Q 21 | Page 121

If f(x)=x2+6x+9, then f(x) is equal to ______________ .

  • 1 for x <3

  • 1 for x<3

  • 1 for all xR

  • none of these

Exercise 11.10 | Q 22 | Page 121

If f(x)=|x29x+20|  then f(x) is equal to ____________ .

  • 2x+9 for all xR

  • 2x9 if 4<x<5

  • 2x+9, if 4<x<5

  • none of these

Exercise 11.10 | Q 23 | Page 121

If f(x)=x210x+25  then the derivative of f (x) in the interval [0, 7] is ____________ .

  • 1

  • -1

  • 0

  • none of these

Exercise 11.10 | Q 24 | Page 121

If f(x)=|x3| and g(x)=fof(x)  is equal to __________ .

  • 1

  • -1

  • 0

  • none of these

Exercise 11.10 | Q 25 | Page 121

If f(x)=(xlxm)l+m(xmxn)m+n(xnxl)n+1 the f' (x) is equal to _____________ .

  • 1

  • 0

  • xl+m+n

  • none of these

Exercise 11.10 | Q 26 | Page 121

If y=11+xab+cb+11+xbc+xac+11+xba+xca then dydx  is equal to ______________ .

  • 1

  • (a+b+c)xa+b+c1

  • 0

  • none of these

Exercise 11.10 | Q 27 | Page 121

If  1x6+1y6=a3(x3y3) then dydx is equal to ____________ .

  • x2y21y61x6

  • y2x21y61+x6

  • x2y21x61y6

  • none of these

Exercise 11.10 | Q 28 | Page 121

If y=logtanx then the value of dydx at x=π4 is given by __________ .

  • 1

  • 0

  • 12

Exercise 11.10 | Q 29 | Page 121

If sin1(x2y2x2+y2)= log a then dydx is equal to _____________ .

  • x2y2x2+y2

  • yx

  • xy

  • none of these

Exercise 11.10 | Q 30 | Page 121

If siny=xcos(a+y), then dydx is equal to ______________ .

  • cos2(a+y)cosa

  • cosacos2(a+y)

  • sin2ycosa

  • none of these

Exercise 11.10 | Q 31 | Page 122

If y=log(1x21+x2), then dydx= __________ .

  • 4x31x4

  • 4x1x4

  • 14x4

  • 4x31x4

Exercise 11.10 | Q 32 | Page 122

If y=sinx+y, then dydx equals  ______________ .

  • cosx2y1

  • cosx12y

  • sinx12y

  • sinx2y1

Exercise 11.10 | Q 33 | Page 122

If y=tan1(sinx+cosxcosxsinx), then dydx is equal to ___________ .

  • 12

  • 0

  • 1

  • none of these

Solutions for 11: Differentiation

Exercise 11.01Exercise 11.02Exercise 11.03Exercise 11.04Exercise 11.05Exercise 11.06Exercise 11.07Exercise 11.08Exercise 11.09Exercise 11.10
RD Sharma solutions for Mathematics [English] Class 12 chapter 11 - Differentiation - Shaalaa.com

RD Sharma solutions for Mathematics [English] Class 12 chapter 11 - Differentiation

Shaalaa.com has the CBSE, Karnataka Board PUC Mathematics Mathematics [English] Class 12 CBSE, Karnataka Board PUC solutions in a manner that help students grasp basic concepts better and faster. The detailed, step-by-step solutions will help you understand the concepts better and clarify any confusion. RD Sharma solutions for Mathematics Mathematics [English] Class 12 CBSE, Karnataka Board PUC 11 (Differentiation) include all questions with answers and detailed explanations. This will clear students' doubts about questions and improve their application skills while preparing for board exams.

Further, we at Shaalaa.com provide such solutions so students can prepare for written exams. RD Sharma textbook solutions can be a core help for self-study and provide excellent self-help guidance for students.

Concepts covered in Mathematics [English] Class 12 chapter 11 Differentiation are Maximum and Minimum Values of a Function in a Closed Interval, Maxima and Minima, Simple Problems on Applications of Derivatives, Graph of Maxima and Minima, Approximations, Tangents and Normals, Increasing and Decreasing Functions, Rate of Change of Bodies or Quantities, Introduction to Applications of Derivatives.

Using RD Sharma Mathematics [English] Class 12 solutions Differentiation exercise by students is an easy way to prepare for the exams, as they involve solutions arranged chapter-wise and also page-wise. The questions involved in RD Sharma Solutions are essential questions that can be asked in the final exam. Maximum CBSE, Karnataka Board PUC Mathematics [English] Class 12 students prefer RD Sharma Textbook Solutions to score more in exams.

Get the free view of Chapter 11, Differentiation Mathematics [English] Class 12 additional questions for Mathematics Mathematics [English] Class 12 CBSE, Karnataka Board PUC, and you can use Shaalaa.com to keep it handy for your exam preparation.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.