English

Differentiate E X Log X ? - Mathematics

Advertisements
Advertisements

Question

Differentiate \[e^{x \log x}\] ?

Solution

\[\text{ Let y } = e^{x \log x} \]
\[ \text{ Taking log on both sides}, \]
\[\log y = x\log x\log e\]
\[ \Rightarrow \log y = x \log x \]
\[\text{ Differentiating with respect to x }, \]
\[\frac{1}{y}\frac{dy}{dx} = x\frac{d}{dx}\log x + \log x\frac{d}{dx}x \]
\[ \Rightarrow \frac{1}{y}\frac{dy}{dx} = x\left( \frac{1}{x} \right) + \log x\left( 1 \right)\]
\[ \Rightarrow \frac{1}{y}\frac{dy}{dx} = 1 + \log x\]
\[ \Rightarrow \frac{dy}{dx} = y\left[ 1 + \log x \right]\]
\[ \Rightarrow \frac{dy}{dx} = e^{x\log x} \left( 1 + \log x \right) \left[ \text{ using equation} \left( i \right) \right]\]
\[ \Rightarrow \frac{dy}{dx} = e^{\log x^x} \left( 1 + \log x \right) \]
\[ \Rightarrow \frac{dy}{dx} = x^x \left( 1 + \log x \right)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Differentiation - Exercise 11.05 [Page 88]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 11 Differentiation
Exercise 11.05 | Q 8 | Page 88

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If the function f(x)=2x39mx2+12m2x+1, where m>0 attains its maximum and minimum at p and q respectively such that p2=q, then find the value of m.

 


Differentiate the following functions from first principles e3x.


Differentiate the following functions from first principles sin−1 (2x + 3) ?


Differentiate etan x ?


Differentiate tan 5x° ?


Differentiate \[\log \left( \frac{\sin x}{1 + \cos x} \right)\] ?


If \[y = \frac{1}{2} \log \left( \frac{1 - \cos 2x }{1 + \cos 2x} \right)\] , prove that \[\frac{ dy }{ dx } = 2 \text{cosec }2x \] ?


If xy = 4, prove that \[x\left( \frac{dy}{dx} + y^2 \right) = 3 y\] ?


Differentiate  \[\sin^{- 1} \left\{ \sqrt{\frac{1 - x}{2}} \right\}, 0 < x < 1\]  ?


Differentiate \[\tan^{- 1} \left( \frac{a + bx}{b - ax} \right)\] ?


Differentiate \[\tan^{- 1} \left( \frac{5 x}{1 - 6 x^2} \right), - \frac{1}{\sqrt{6}} < x < \frac{1}{\sqrt{6}}\] ?


If \[y = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), x > 0\] ,prove that \[\frac{dy}{dx} = \frac{4}{1 + x^2} \] ? 


Find  \[\frac{dy}{dx}\] in the following case \[\left( x + y \right)^2 = 2axy\] ?

 


If \[xy = 1\] prove that \[\frac{dy}{dx} + y^2 = 0\] ?


Differentiate \[e^{\sin x }+ \left( \tan x \right)^x\] ?


Differentiate \[\left( \cos x \right)^x + \left( \sin x \right)^{1/x}\] ?


If \[e^{x + y} - x = 0\] ,prove that \[\frac{dy}{dx} = \frac{1 - x}{x}\] ?


If \[y = x \sin \left( a + y \right)\] , prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?

 


If  \[y = \sqrt{\tan x + \sqrt{\tan x + \sqrt{\tan x + . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sec^2 x}{2 y - 1}\] ?

 


If \[y = \left( \tan x \right)^{\left( \tan x \right)^{\left( \tan x \right)^{. . . \infty}}}\], prove that \[\frac{dy}{dx} = 2\ at\ x = \frac{\pi}{4}\] ?

 


If \[x = a \left( \theta - \sin \theta \right) and, y = a \left( 1 + \cos \theta \right), \text { find } \frac{dy}{dx} \text{ at }\theta = \frac{\pi}{3} \] ?

 


Differentiate  \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\] \[x \in \left( - 1, 0 \right)\] ?


Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right), \text { if }- \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?


Differentiate \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right)\] with respect to \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right), \text { if } - \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?


If \[\pi \leq x \leq 2\pi \text { and y } = \cos^{- 1} \left( \cos x \right), \text { find } \frac{dy}{dx}\] ?


If \[y = \sin^{- 1} x + \cos^{- 1} x\] ,find \[\frac{dy}{dx}\] ?


If \[u = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ and v} = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right)\] where \[- 1 < x < 1\], then write the value of \[\frac{du}{dv}\] ?


If f (x) is an odd function, then write whether `f' (x)` is even or odd ?


If \[x = 3\sin t - \sin3t, y = 3\cos t - \cos3t \text{ find }\frac{dy}{dx} \text{ at } t = \frac{\pi}{3}\] ?


If \[y = \tan^{- 1} \left( \frac{\sin x + \cos x}{\cos x - \sin x} \right), \text { then  } \frac{dy}{dx}\] is equal to ___________ .


If x = a sec θ, y = b tan θ, prove that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?


If y = 500 e7x + 600 e−7x, show that \[\frac{d^2 y}{d x^2} = 49y\] ?


\[\text { If x } = a\left( \cos t + t \sin t \right) \text { and y} = a\left( \sin t - t \cos t \right),\text { then find the value of } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?


If y = |x − x2|, then find \[\frac{d^2 y}{d x^2}\] ?


If \[y = \left| \log_e x \right|\] find\[\frac{d^2 y}{d x^2}\] ?


If x = a cos nt − b sin nt, then \[\frac{d^2 x}{d t^2}\] is 

 


If x = at2, y = 2 at, then \[\frac{d^2 y}{d x^2} =\] 

 


Let f(x) be a polynomial. Then, the second order derivative of f(ex) is



If x = f(t) and y = g(t), then \[\frac{d^2 y}{d x^2}\] is equal to

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×