Advertisements
Advertisements
Question
Differentiate \[\log \left( \frac{\sin x}{1 + \cos x} \right)\] ?
Solution
\[\text{Let y} = \log\left( \frac{\sin x}{1 + \cos x} \right)\]
\[\text{Differentiate it with respect to x, we get}\]
\[\frac{d y}{d x} = \frac{d}{dx}\log\left( \frac{\sin x}{1 + \cos x} \right)\]
\[ = \frac{1}{\left( \frac{\sin x}{1 + \cos x} \right)} \times \frac{d}{dx}\left( \frac{\sin x}{1 + \cos x} \right) ........\left[ \text{Using chain rule } \right]\]
\[ = \left( \frac{1 + \cos x}{\sin x} \right)\left[ \frac{\left( 1 + \cos x \right)\frac{d}{dx}\left( \sin x \right) - \sin x\frac{d}{dx}\left( 1 + \cos x \right)}{\left( 1 + \cos x \right)^2} \right] ........\left[ \text{Using quotient rule} \right]\]
\[ = \left( \frac{1 + \cos x}{\sin x} \right)\left[ \frac{\left( 1 + \cos x \right)\left( \cos x \right) - \sin x\left( - \sin x \right)}{\left( 1 + \cos x \right)^2} \right]\]
\[ = \left( \frac{1 + \cos x}{\sin x} \right)\left[ \frac{\cos x + \cos^2 x + \sin^2 x}{\left( 1 + \cos x \right)^2} \right]\]
\[ = \left( \frac{1 + \cos x}{\sin x} \right)\left[ \frac{\left( 1 + \cos x \right)}{\left( 1 + \cos x \right)^2} \right]\]
\[ = \frac{1}{\sin x}\]
`= "cosec "x`
So, `d/(dx){log((sin x)/(1+cos x))}= "cosec "x`
APPEARS IN
RELATED QUESTIONS
If y = xx, prove that `(d^2y)/(dx^2)−1/y(dy/dx)^2−y/x=0.`
Differentiate \[\tan \left( e^{\sin x }\right)\] ?
Differentiate \[x \sin 2x + 5^x + k^k + \left( \tan^2 x \right)^3\] ?
\[\log\left\{ \cot\left( \frac{\pi}{4} + \frac{x}{2} \right) \right\}\] ?
If \[y = \log \left\{ \sqrt{x - 1} - \sqrt{x + 1} \right\}\] ,show that \[\frac{dy}{dx} = \frac{- 1}{2\sqrt{x^2 - 1}}\] ?
Prove that \[\frac{d}{dx} \left\{ \frac{x}{2}\sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{- 1} \frac{x}{a} \right\} = \sqrt{a^2 - x^2}\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{\sqrt{1 + x} + \sqrt{1 - x}}{2} \right\}, 0 < x < 1\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{2^{x + 1} \cdot 3^x}{1 + \left( 36 \right)^x} \right\}\] with respect to x ?
Find \[\frac{dy}{dx}\] in the following case \[4x + 3y = \log \left( 4x - 3y \right)\] ?
Differentiate \[\left( \log x \right)^{\cos x}\] ?
Differentiate \[\sin \left( x^x \right)\] ?
Differentiate \[x^{\tan^{- 1} x }\] ?
If \[x^y \cdot y^x = 1\] , prove that \[\frac{dy}{dx} = - \frac{y \left( y + x \log y \right)}{x \left( y \log x + x \right)}\] ?
If \[\left( \sin x \right)^y = \left( \cos y \right)^x ,\], prove that \[\frac{dy}{dx} = \frac{\log \cos y - y cot x}{\log \sin x + x \tan y}\] ?
If \[e^x + e^y = e^{x + y}\] , prove that
\[\frac{dy}{dx} + e^{y - x} = 0\] ?
If \[e^{x + y} - x = 0\] ,prove that \[\frac{dy}{dx} = \frac{1 - x}{x}\] ?
If \[x = e^{\cos 2 t} \text{ and y }= e^{\sin 2 t} ,\] prove that \[\frac{dy}{dx} = - \frac{y \log x}{x \log y}\] ?
If \[x = 10 \left( t - \sin t \right), y = 12 \left( 1 - \cos t \right), \text { find } \frac{dy}{dx} .\] ?
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( \frac{1}{\sqrt{2}}, 1 \right)\] ?
If f (x) = loge (loge x), then write the value of `f' (e)` ?
If \[- \frac{\pi}{2} < x < 0 \text{ and y } = \tan^{- 1} \sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}, \text{ find } \frac{dy}{dx}\] ?
If f (x) = logx2 (log x), the `f' (x)` at x = e is ____________ .
If \[\sin y = x \sin \left( a + y \right), \text { then }\frac{dy}{dx} \text { is}\] ____________ .
If \[f\left( x \right) = \left| x - 3 \right| \text { and }g\left( x \right) = fof \left( x \right)\] is equal to __________ .
If \[y = \log \sqrt{\tan x}\] then the value of \[\frac{dy}{dx}\text { at }x = \frac{\pi}{4}\] is given by __________ .
If \[y = \log \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] __________ .
If \[y = \sqrt{\sin x + y}, \text { then }\frac{dy}{dx} \text { equals }\] ______________ .
If x = a (θ − sin θ), y = a (1 + cos θ) prove that, find \[\frac{d^2 y}{d x^2}\] ?
If \[y = e^{2x} \left( ax + b \right)\] show that \[y_2 - 4 y_1 + 4y = 0\] ?
If log y = tan−1 x, show that (1 + x2)y2 + (2x − 1) y1 = 0 ?
If y = cot x show that \[\frac{d^2 y}{d x^2} + 2y\frac{dy}{dx} = 0\] ?
If y = 500 e7x + 600 e−7x, show that \[\frac{d^2 y}{d x^2} = 49y\] ?
If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =
If y = sin (m sin−1 x), then (1 − x2) y2 − xy1 is equal to
If \[y = \frac{ax + b}{x^2 + c}\] then (2xy1 + y)y3 =
If `x=a (cos t +t sint )and y= a(sint-cos t )` Prove that `Sec^3 t/(at),0<t< pi/2`
If x = a (1 + cos θ), y = a(θ + sin θ), prove that \[\frac{d^2 y}{d x^2} = \frac{- 1}{a}at \theta = \frac{\pi}{2}\]
If p, q, r, s are real number and pr = 2(q + s) then for the equation x2 + px + q = 0 and x2 + rx + s = 0 which of the following statement is true?