English

If X Y ⋅ Y X = 1 , Prove that D Y D X = − Y ( Y + X Log Y ) X ( Y Log X + X ) ? - Mathematics

Advertisements
Advertisements

Question

If \[x^y \cdot y^x = 1\] , prove that \[\frac{dy}{dx} = - \frac{y \left( y + x \log y \right)}{x \left( y \log x + x \right)}\] ?

Solution

\[\text{ We have }, x^y \times y^x = 1\] 

Taking log on both sides,

\[\log\left( x^y \times y^x \right) = \log\left( 1 \right)\]

\[ \Rightarrow y\log x + x \log y = \log1 \]

Differentiating with respect to ,

\[\frac{d}{dx}\left( y \log x \right) + \frac{d}{dx}\left( x \log x \right) = \frac{d}{dx}\left( \log1 \right)\]

\[ \Rightarrow \left[ y\frac{d}{dx}\left( \log x \right) + \log x\frac{dy}{dx} \right] + \left[ x\frac{d}{dx}\left( \log y \right) + \log y\frac{d}{dx}\left( x \right) \right] = 0\]

\[ \Rightarrow \left[ y\left( \frac{1}{x} \right) + \log x\frac{dy}{dx} \right] + \left[ x\left( \frac{1}{y}\frac{dy}{dx} \right) + \log y\left( 1 \right) \right] = 0\]

\[ \Rightarrow \frac{y}{x} + \log x\frac{dy}{dx} + \frac{x}{y}\frac{dy}{dx} + \log y = 0\]

\[ \Rightarrow \frac{dy}{dx}\left( \log x + \frac{x}{y} \right) = - \left[ \log y + \frac{y}{x} \right]\]

\[ \Rightarrow \frac{dy}{dx}\left[ \frac{y \log x + x}{y} \right] = - \left[ \frac{x \log y + y}{x} \right]\]

\[ \Rightarrow \frac{dy}{dx} = - \frac{y}{x}\left[ \frac{x \log y + y}{y \log x + x} \right]\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Differentiation - Exercise 11.05 [Page 89]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 11 Differentiation
Exercise 11.05 | Q 37 | Page 89

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Differentiate the following functions from first principles x2ex ?


Differentiate \[e^{\sin} \sqrt{x}\] ?


Differentiate \[\log \left( \tan^{- 1} x \right)\]? 


Differentiate \[\frac{2^x \cos x}{\left( x^2 + 3 \right)^2}\] ?


If \[y = \log \left\{ \sqrt{x - 1} - \sqrt{x + 1} \right\}\] ,show that \[\frac{dy}{dx} = \frac{- 1}{2\sqrt{x^2 - 1}}\] ?


If  \[y = \left( x - 1 \right) \log \left( x - 1 \right) - \left( x + 1 \right) \log \left( x + 1 \right)\] , prove that \[\frac{dy}{dc} = \log \left( \frac{x - 1}{1 + x} \right)\] ?


Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] with respect to x.


Find  \[\frac{dy}{dx}\] in the following case  \[x^{2/3} + y^{2/3} = a^{2/3}\] ?

 


If \[x y^2 = 1,\] prove that \[2\frac{dy}{dx} + y^3 = 0\] ?


Differentiate \[x^{\sin x}\]  ?


Differentiate \[x^{\cos^{- 1} x}\] ?


Find  \[\frac{dy}{dx}\] \[y = e^x + {10}^x + x^x\] ?

 


Find  \[\frac{dy}{dx}\]  \[y = \left( \sin x \right)^{\cos x} + \left( \cos x \right)^{\sin x}\] ?

 


If \[y = x \sin y\] , prove that  \[\frac{dy}{dx} = \frac{y}{x \left( 1 - x \cos y \right)}\] ?

 


If \[y = \sqrt{x + \sqrt{x + \sqrt{x + . . . to \infty ,}}}\] prove that \[\frac{dy}{dx} = \frac{1}{2 y - 1}\] ?


\[y = \left( \sin x \right)^{\left( \sin x \right)^{\left( \sin x \right)^{. . . \infty}}} \],prove that \[\frac{y^2 \cot x}{\left( 1 - y \log \sin x \right)}\] ?


Find \[\frac{dy}{dx}\] ,When \[x = a \left( 1 - \cos \theta \right) \text{ and } y = a \left( \theta + \sin \theta \right) \text{ at } \theta  = \frac{\pi}{2}\] ?


Find \[\frac{dy}{dx}\] , when  \[x = \cos^{- 1} \frac{1}{\sqrt{1 + t^2}} \text{ and y } = \sin^{- 1} \frac{t}{\sqrt{1 + t^2}}, t \in R\] ?


Differentiate\[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right)\] with respect to \[\sin^{-1} \left( \frac{2x}{1 + x^2} \right)\], If \[- 1 < x < 1, x \neq 0 .\] ?


Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right), \text { if }- \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?


If \[\pi \leq x \leq 2\pi \text { and y } = \cos^{- 1} \left( \cos x \right), \text { find } \frac{dy}{dx}\] ?


If \[x = a \cos^3 \theta, y = a \sin^3 \theta, \text { then } \sqrt{1 + \left( \frac{dy}{dx} \right)^2} =\] ____________ .


For the curve \[\sqrt{x} + \sqrt{y} = 1, \frac{dy}{dx}\text {  at } \left( 1/4, 1/4 \right)\text {  is }\] _____________ .


Let  \[\cup = \sin^{- 1} \left( \frac{2 x}{1 + x^2} \right) \text { and }V = \tan^{- 1} \left( \frac{2 x}{1 - x^2} \right), \text { then } \frac{d \cup}{dV} =\] ____________ .


If \[3 \sin \left( xy \right) + 4 \cos \left( xy \right) = 5, \text { then } \frac{dy}{dx} =\] _____________ .


If  \[\sqrt{1 - x^6} + \sqrt{1 - y^6} = a^3 \left( x^3 - y^3 \right)\] then \[\frac{dy}{dx}\] is equal to ____________ .


If x = a cos θ, y = b sin θ, show that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?


If y = cot x show that \[\frac{d^2 y}{d x^2} + 2y\frac{dy}{dx} = 0\] ?


Find \[\frac{d^2 y}{d x^2}\] where \[y = \log \left( \frac{x^2}{e^2} \right)\] ?


If y = ex (sin + cos x) prove that \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\] ?


If x = 4z2 + 5, y = 6z2 + 7z + 3, find \[\frac{d^2 y}{d x^2}\] ?


If \[x = 3 \cos t - 2 \cos^3 t, y = 3\sin t - 2 \sin^3 t,\] find \[\frac{d^2 y}{d x^2} \] ?


If x = a cos nt − b sin nt, then \[\frac{d^2 x}{d t^2}\] is 

 


\[\frac{d^{20}}{d x^{20}} \left( 2 \cos x \cos 3 x \right) =\]

 


If x = 2 at, y = at2, where a is a constant, then \[\frac{d^2 y}{d x^2} \text { at x } = \frac{1}{2}\] is 

 


If \[y^\frac{1}{n} + y^{- \frac{1}{n}} = 2x, \text { then find } \left( x^2 - 1 \right) y_2 + x y_1 =\] ?


If y2 = ax2 + bx + c, then \[y^3 \frac{d^2 y}{d x^2}\] is 

 


If xy = e(x – y), then show that `dy/dx = (y(x-1))/(x(y+1)) .`


\[\text { If } y = \left( x + \sqrt{1 + x^2} \right)^n , \text { then show that }\]

\[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = n^2 y .\]


Differentiate `log [x+2+sqrt(x^2+4x+1)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×