Advertisements
Advertisements
Question
If \[y^\frac{1}{n} + y^{- \frac{1}{n}} = 2x, \text { then find } \left( x^2 - 1 \right) y_2 + x y_1 =\] ?
Options
`-n^2y`
my
`n^2y`
None of these
Solution
\[\left( c \right) n^2 y\]
\[ y^\frac{1}{n} + y^{- \frac{1}{n}} = 2x\]
\[\text { Differentiating the above equation with respect to x }\]
\[\left( \frac{1}{n} y^\frac{1}{n} - 1 - \frac{1}{n} y^{- \frac{1}{n} - 1} \right) y_1 = 2\]
\[\frac{1}{ny}\left( y^\frac{1}{n} - y^{- \frac{1}{n}} \right) y_1 = 2\]
\[\left( y^\frac{1}{n} - y^{- \frac{1}{n}} \right) y_1 = 2ny . . . . . \left( 1 \right)\]
\[\left( y^\frac{1}{n} - y^{- \frac{1}{n}} \right) y_2 + y_1 \left( \frac{1}{n} y^\frac{1}{n} - 1 + \frac{1}{n} y^{- \frac{1}{n} - 1} \right) y_1 = 2n y_1 \]
\[ny\left( y^\frac{1}{n} - y^{- \frac{1}{n}} \right) y_2 + {y_1}^2 \left( y^\frac{1}{n} + y^{- \frac{1}{n}} \right) = 2 n^2 y y_1 \]
\[\text{ Dividing the above equation by } y_1 \]
\[\frac{ny}{y_1}\left( y^\frac{1}{n} - y^{- \frac{1}{n}} \right) y_2 + y_1 \left( y^\frac{1}{n} + y^{- \frac{1}{n}} \right) = 2 n^2 y\]
\[\text {Putting y_1 from equation }\left( 1 \right)\]
\[\frac{\left( y^\frac{1}{n} - y^{- \frac{1}{n}} \right)^2}{2} y_2 + y_1 \left( y^\frac{1}{n} + y^{- \frac{1}{n}} \right) = 2 n^2 y . . . . . \left( 2 \right)\]
\[\text { Now,} \]
\[ \left( y^\frac{1}{n} - y^{- \frac{1}{n}} \right)^2 = \left( y^\frac{1}{n} + y^{- \frac{1}{n}} \right)^2 - 4\]
\[ \left( y^\frac{1}{n} - y^{- \frac{1}{n}} \right)^2 = 4 x^2 - 4 . . . . . \left( 3 \right)\]
\[\text { Putting the value of }\left( 3 \right)in\left( 2 \right)\]
\[\frac{4\left( x^2 - 1 \right) y_2}{2} + 2x y_1 = 2 n^2 y\]
\[\left( x^2 - 1 \right) y_2 + x y_1 = n^2 y\]
APPEARS IN
RELATED QUESTIONS
Differentiate the following functions from first principles eax+b.
Differentiate sin (log x) ?
Differentiate \[3^{x^2 + 2x}\] ?
Differentiate \[\frac{x^2 + 2}{\sqrt{\cos x}}\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{\sqrt{1 + x} + \sqrt{1 - x}}{2} \right\}, 0 < x < 1\] ?
Differentiate \[\sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), x \in R\] ?
Differentiate
\[\tan^{- 1} \left( \frac{\cos x + \sin x}{\cos x - \sin x} \right), \frac{\pi}{4} < x < \frac{\pi}{4}\] ?
Find \[\frac{dy}{dx}\] in the following case \[x^{2/3} + y^{2/3} = a^{2/3}\] ?
Find \[\frac{dy}{dx}\] in the following case \[\left( x^2 + y^2 \right)^2 = xy\] ?
If \[y \sqrt{x^2 + 1} = \log \left( \sqrt{x^2 + 1} - x \right)\] ,Show that \[\left( x^2 + 1 \right) \frac{dy}{dx} + xy + 1 = 0\] ?
Differentiate \[\left( 1 + \cos x \right)^x\] ?
Differentiate \[\left( \sin x \right)^{\log x}\] ?
Differentiate \[\sin \left( x^x \right)\] ?
Differentiate \[x^{\tan^{- 1} x }\] ?
Find \[\frac{dy}{dx}\] \[y = x^x + \left( \sin x \right)^x\] ?
If \[y = \sqrt{x + \sqrt{x + \sqrt{x + . . . to \infty ,}}}\] prove that \[\frac{dy}{dx} = \frac{1}{2 y - 1}\] ?
If \[y = \left( \cos x \right)^{\left( \cos x \right)^{\left( \cos x \right) . . . \infty}}\],prove that \[\frac{dy}{dx} = - \frac{y^2 \tan x}{\left( 1 - y \log \cos x \right)}\]?
Find \[\frac{dy}{dx}\] ,When \[x = a \left( 1 - \cos \theta \right) \text{ and } y = a \left( \theta + \sin \theta \right) \text{ at } \theta = \frac{\pi}{2}\] ?
Find \[\frac{dy}{dx}\] when \[x = \frac{2 t}{1 + t^2} \text{ and } y = \frac{1 - t^2}{1 + t^2}\] ?
If \[x = \cos t \text{ and y } = \sin t,\] prove that \[\frac{dy}{dx} = \frac{1}{\sqrt{3}} \text { at } t = \frac{2 \pi}{3}\] ?
Differentiate\[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right)\] with respect to \[\sin^{-1} \left( \frac{2x}{1 + x^2} \right)\], If \[- 1 < x < 1, x \neq 0 .\] ?
Differentiate \[\tan^{- 1} \left( \frac{1 - x}{1 + x} \right)\] with respect to \[\sqrt{1 - x^2},\text {if} - 1 < x < 1\] ?
If \[f'\left( 1 \right) = 2 \text { and y } = f \left( \log_e x \right), \text { find} \frac{dy}{dx} \text { at }x = e\] ?
If \[y = x \left| x \right|\] , find \[\frac{dy}{dx} \text{ for } x < 0\] ?
The derivative of the function \[\cot^{- 1} \left| \left( \cos 2 x \right)^{1/2} \right| \text{ at } x = \pi/6 \text{ is }\] ______ .
For the curve \[\sqrt{x} + \sqrt{y} = 1, \frac{dy}{dx}\text { at } \left( 1/4, 1/4 \right)\text { is }\] _____________ .
If \[\sin y = x \sin \left( a + y \right), \text { then }\frac{dy}{dx} \text { is}\] ____________ .
If \[f\left( x \right) = \sqrt{x^2 - 10x + 25}\] then the derivative of f (x) in the interval [0, 7] is ____________ .
Find the second order derivatives of the following function e6x cos 3x ?
If x = a sec θ, y = b tan θ, prove that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?
If y = (sin−1 x)2, prove that (1 − x2)
\[\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?
If log y = tan−1 x, show that (1 + x2)y2 + (2x − 1) y1 = 0 ?
If \[y = \left[ \log \left( x + \sqrt{x^2 + 1} \right) \right]^2\] show that \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 2\] ?
If y = cot x show that \[\frac{d^2 y}{d x^2} + 2y\frac{dy}{dx} = 0\] ?
If \[x = 3 \cos t - 2 \cos^3 t, y = 3\sin t - 2 \sin^3 t,\] find \[\frac{d^2 y}{d x^2} \] ?
If \[y = \left| \log_e x \right|\] find\[\frac{d^2 y}{d x^2}\] ?