Advertisements
Advertisements
प्रश्न
If \[y^\frac{1}{n} + y^{- \frac{1}{n}} = 2x, \text { then find } \left( x^2 - 1 \right) y_2 + x y_1 =\] ?
पर्याय
`-n^2y`
my
`n^2y`
None of these
उत्तर
\[\left( c \right) n^2 y\]
\[ y^\frac{1}{n} + y^{- \frac{1}{n}} = 2x\]
\[\text { Differentiating the above equation with respect to x }\]
\[\left( \frac{1}{n} y^\frac{1}{n} - 1 - \frac{1}{n} y^{- \frac{1}{n} - 1} \right) y_1 = 2\]
\[\frac{1}{ny}\left( y^\frac{1}{n} - y^{- \frac{1}{n}} \right) y_1 = 2\]
\[\left( y^\frac{1}{n} - y^{- \frac{1}{n}} \right) y_1 = 2ny . . . . . \left( 1 \right)\]
\[\left( y^\frac{1}{n} - y^{- \frac{1}{n}} \right) y_2 + y_1 \left( \frac{1}{n} y^\frac{1}{n} - 1 + \frac{1}{n} y^{- \frac{1}{n} - 1} \right) y_1 = 2n y_1 \]
\[ny\left( y^\frac{1}{n} - y^{- \frac{1}{n}} \right) y_2 + {y_1}^2 \left( y^\frac{1}{n} + y^{- \frac{1}{n}} \right) = 2 n^2 y y_1 \]
\[\text{ Dividing the above equation by } y_1 \]
\[\frac{ny}{y_1}\left( y^\frac{1}{n} - y^{- \frac{1}{n}} \right) y_2 + y_1 \left( y^\frac{1}{n} + y^{- \frac{1}{n}} \right) = 2 n^2 y\]
\[\text {Putting y_1 from equation }\left( 1 \right)\]
\[\frac{\left( y^\frac{1}{n} - y^{- \frac{1}{n}} \right)^2}{2} y_2 + y_1 \left( y^\frac{1}{n} + y^{- \frac{1}{n}} \right) = 2 n^2 y . . . . . \left( 2 \right)\]
\[\text { Now,} \]
\[ \left( y^\frac{1}{n} - y^{- \frac{1}{n}} \right)^2 = \left( y^\frac{1}{n} + y^{- \frac{1}{n}} \right)^2 - 4\]
\[ \left( y^\frac{1}{n} - y^{- \frac{1}{n}} \right)^2 = 4 x^2 - 4 . . . . . \left( 3 \right)\]
\[\text { Putting the value of }\left( 3 \right)in\left( 2 \right)\]
\[\frac{4\left( x^2 - 1 \right) y_2}{2} + 2x y_1 = 2 n^2 y\]
\[\left( x^2 - 1 \right) y_2 + x y_1 = n^2 y\]
APPEARS IN
संबंधित प्रश्न
If y = xx, prove that `(d^2y)/(dx^2)−1/y(dy/dx)^2−y/x=0.`
Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is `cos^(-1)(1/sqrt3)`
Differentiate the following functions from first principles sin−1 (2x + 3) ?
Differentiate \[3^{e^x}\] ?
Differentiate \[\cos^{- 1} \left\{ \frac{\cos x + \sin x}{\sqrt{2}} \right\}, - \frac{\pi}{4} < x < \frac{\pi}{4}\] ?
Differentiate \[\tan^{- 1} \left( \frac{x - a}{x + a} \right)\] ?
If \[y = \sin \left[ 2 \tan^{- 1} \left\{ \frac{\sqrt{1 - x}}{1 + x} \right\} \right], \text{ find } \frac{dy}{dx}\] ?
If \[y = \cos^{- 1} \left\{ \frac{2x - 3 \sqrt{1 - x^2}}{\sqrt{13}} \right\}, \text{ find } \frac{dy}{dx}\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{2^{x + 1} \cdot 3^x}{1 + \left( 36 \right)^x} \right\}\] with respect to x ?
Find \[\frac{dy}{dx}\] in the following case \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] ?
If \[x y^2 = 1,\] prove that \[2\frac{dy}{dx} + y^3 = 0\] ?
If \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?
Find \[\frac{dy}{dx}\] \[y = x^{\sin x} + \left( \sin x \right)^x\] ?
If \[y = x \sin \left( a + y \right)\] , prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?
If \[\left( \sin x \right)^y = x + y\] , prove that \[\frac{dy}{dx} = \frac{1 - \left( x + y \right) y \cot x}{\left( x + y \right) \log \sin x - 1}\] ?
Find the derivative of the function f (x) given by \[f\left( x \right) = \left( 1 + x \right) \left( 1 + x^2 \right) \left( 1 + x^4 \right) \left( 1 + x^8 \right)\] and hence find `f' (1)` ?
Find \[\frac{dy}{dx}\] ,When \[x = a \left( 1 - \cos \theta \right) \text{ and } y = a \left( \theta + \sin \theta \right) \text{ at } \theta = \frac{\pi}{2}\] ?
Find \[\frac{dy}{dx}\] ,When \[x = e^\theta \left( \theta + \frac{1}{\theta} \right) \text{ and } y = e^{- \theta} \left( \theta - \frac{1}{\theta} \right)\] ?
If \[x = 10 \left( t - \sin t \right), y = 12 \left( 1 - \cos t \right), \text { find } \frac{dy}{dx} .\] ?
Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { if } 0 < x < 1\] ?
If \[\pi \leq x \leq 2\pi \text { and y } = \cos^{- 1} \left( \cos x \right), \text { find } \frac{dy}{dx}\] ?
If \[y = \tan^{- 1} \left( \frac{1 - x}{1 + x} \right), \text{ find} \frac{dy}{dx}\] ?
If \[y = \log \left| 3x \right|, x \neq 0, \text{ find } \frac{dy}{dx} \] ?
The derivative of \[\sec^{- 1} \left( \frac{1}{2 x^2 + 1} \right) \text { w . r . t }. \sqrt{1 + 3 x} \text { at } x = - 1/3\]
If \[y = \log \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] __________ .
If \[y = \sqrt{\sin x + y}, \text { then }\frac{dy}{dx} \text { equals }\] ______________ .
If y = e−x cos x, show that \[\frac{d^2 y}{d x^2} = 2 e^{- x} \sin x\] ?
If x = a(1 − cos θ), y = a(θ + sin θ), prove that \[\frac{d^2 y}{d x^2} = - \frac{1}{a}\text { at } \theta = \frac{\pi}{2}\] ?
\[\text{ If x } = a\left( \cos t + \log \tan\frac{t}{2} \right) \text { and y } = a\left( \sin t \right), \text { evaluate } \frac{d^2 y}{d x^2} \text { at t } = \frac{\pi}{3} \] ?
If y = a xn + 1 + bx−n and \[x^2 \frac{d^2 y}{d x^2} = \lambda y\] then write the value of λ ?
Let f(x) be a polynomial. Then, the second order derivative of f(ex) is
If x = f(t) cos t − f' (t) sin t and y = f(t) sin t + f'(t) cos t, then\[\left( \frac{dx}{dt} \right)^2 + \left( \frac{dy}{dt} \right)^2 =\]
If logy = tan–1 x, then show that `(1+x^2) (d^2y)/(dx^2) + (2x - 1) dy/dx = 0 .`
\[\text { If } y = \left( x + \sqrt{1 + x^2} \right)^n , \text { then show that }\]
\[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = n^2 y .\]
If y = xx, prove that \[\frac{d^2 y}{d x^2} - \frac{1}{y} \left( \frac{dy}{dx} \right)^2 - \frac{y}{x} = 0 .\]