मराठी

If X Sin ( a + Y ) + Sin a Cos ( a + Y ) = 0 Prove that D Y D X = Sin 2 ( a + Y ) Sin a ? - Mathematics

Advertisements
Advertisements

प्रश्न

If \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?

बेरीज

उत्तर

\[\text{ We have, } x\sin\left( a + y \right) + \sin a\cos\left( a + y \right) = 0 \]

Differentiate with respect to x, 

\[\Rightarrow \frac{d}{dx}\left[ x \sin\left( a + y \right) \right] + \frac{d}{dx}\left[ \sin a \cos\left( a + y \right) \right] = 0\]

\[ \Rightarrow \left[ x\frac{d}{dx}\sin \left( a + y \right) + \sin\left( a + y \right)\frac{d}{dx}\left( x \right) \right] + \sin a\frac{d}{dx}\cos\left( a + y \right) = 0 \]

\[ \Rightarrow \left[ x \cos\left( a + y \right)\frac{d}{dx}\left( a + y \right) + \sin\left( a + y \right)\left( 1 \right) \right] + \sin a\left[ - \sin\left( a + y \right)\frac{d}{dx}\left( a + y \right) \right] = 0\]

\[ \Rightarrow x \cos\left( a + y \right)\frac{d y}{d x} + \sin\left( a + y \right) - \sin a\sin\left( a + y \right)\frac{d y}{d x} = 0\]

\[ \Rightarrow \frac{d y}{d x}\left[ x \cos\left( a + y \right) - \sin a \sin\left( a + y \right) \right] = - \sin\left( a + y \right)\]

\[ \Rightarrow \frac{d y}{d x}\left[ - \sin a\frac{\cos^2 \left( a + y \right)}{\sin\left( a + y \right)} - \sin a \sin\left( a + y \right) \right] = - \sin\left( a + y \right) \left[ \because x = - \sin a\frac{\cos\left( a + y \right)}{\sin\left( a + y \right)} \right]\]

\[ \Rightarrow - \frac{d y}{d x}\left[ \frac{\sin a \cos^2 \left( a + y \right) + \sin a \sin^2 \left( a + y \right)}{\sin\left( a + y \right)} \right] = - \sin\left( a + y \right)\]

\[ \Rightarrow \frac{d y}{d x} = \sin\left( a + y \right)\left[ \frac{\sin\left( a + y \right)}{\sin a\left\{ \cos^2 \left( a + y \right) + \sin^2 \left( a + y \right) \right\}} \right]\]

\[ \Rightarrow \frac{d y}{d x} = \frac{\sin^2 \left( a + y \right)}{\sin a} \]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Differentiation - Exercise 11.04 [पृष्ठ ७५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 11 Differentiation
Exercise 11.04 | Q 22 | पृष्ठ ७५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

 

If y = xx, prove that `(d^2y)/(dx^2)−1/y(dy/dx)^2−y/x=0.`

 

Differentiate the following functions from first principles ecos x.


Differentiate the following functions from first principles  \[e^\sqrt{2x}\].


Differentiate the following functions from first principles log cosec x ?


Differentiate logx 3 ?


Differentiate \[\sqrt{\frac{1 + \sin x}{1 - \sin x}}\] ?


Differentiate \[\sqrt{\tan^{- 1} \left( \frac{x}{2} \right)}\] ?


Differentiate  \[e^x \log \sin 2x\] ?


If \[y = \frac{x}{x + 2}\]  , prove tha \[x\frac{dy}{dx} = \left( 1 - y \right) y\] ? 


Differentiate \[\sin^{- 1} \left\{ \frac{\sin x + \cos x}{\sqrt{2}} \right\}, - \frac{3 \pi}{4} < x < \frac{\pi}{4}\] ?


Differentiate \[\tan^{- 1} \left\{ \frac{x}{a + \sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?


Differentiate 

\[\tan^{- 1} \left( \frac{\cos x + \sin x}{\cos x - \sin x} \right), \frac{\pi}{4} < x < \frac{\pi}{4}\] ?


If  \[y = \cot^{- 1} \left\{ \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} \right\}\],  show that \[\frac{dy}{dx}\] is independent of x. ? 

 


If  \[y = se c^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right), x > 0 . \text{ Find} \frac{dy}{dx}\] ?

 


Find  \[\frac{dy}{dx}\] in the following case \[\sin xy + \cos \left( x + y \right) = 1\] ?

 


If \[\sec \left( \frac{x + y}{x - y} \right) = a\] Prove that  \[\frac{dy}{dx} = \frac{y}{x}\] ?


If \[\sin^2 y + \cos xy = k,\] find  \[\frac{dy}{dx}\] at \[x = 1 , \] \[y = \frac{\pi}{4} .\] 


Differentiate \[x^{\sin x}\]  ?


Differentiate \[\left( \log x \right)^{\cos x}\] ?


Differentiate \[x^\left( \sin x - \cos x \right) + \frac{x^2 - 1}{x^2 + 1}\] ?


Differentiate\[\left( x + \frac{1}{x} \right)^x + x^\left( 1 + \frac{1}{x} \right)\] ?


If \[x^{16} y^9 = \left( x^2 + y \right)^{17}\] ,prove that \[x\frac{dy}{dx} = 2 y\] ?


If \[x^y + y^x = \left( x + y \right)^{x + y} , \text{ find } \frac{dy}{dx}\] ?


If \[e^x + e^y = e^{x + y}\] , prove that

\[\frac{dy}{dx} + e^{y - x} = 0\] ?


If \[y = e^{x^{e^x}} + x^{e^{e^x}} + e^{x^{x^e}}\], prove that  \[\frac{dy}{dx} = e^{x^{e^x}} \cdot x^{e^x} \left\{ \frac{e^x}{x} + e^x \cdot \log x \right\}+ x^{e^{e^x}} \cdot e^{e^x} \left\{ \frac{1}{x} + e^x \cdot \log x \right\} + e^{x^{x^e}} x^{x^e} \cdot x^{e - 1} \left\{ x + e \log x \right\}\]

 


Write the derivative of sinx with respect to cos x ?


If \[f'\left( x \right) = \sqrt{2 x^2 - 1} \text { and y } = f \left( x^2 \right)\] then find \[\frac{dy}{dx} \text { at } x = 1\] ?


If \[f\left( x \right) = \tan^{- 1} \sqrt{\frac{1 + \sin x}{1 - \sin x}}, 0 \leq x \leq \pi/2, \text{ then } f' \left( \pi/6 \right) \text{ is }\] _________ .


If \[f\left( x \right) = \left| x - 3 \right| \text { and }g\left( x \right) = fof \left( x \right)\]  is equal to __________ .


If \[y = \frac{1}{1 + x^{a - b} +^{c - b}} + \frac{1}{1 + x^{b - c} + x^{a - c}} + \frac{1}{1 + x^{b - a} + x^{c - a}}\] then \[\frac{dy}{dx}\]  is equal to ______________ .


Find the second order derivatives of the following function sin (log x) ?


Find the second order derivatives of the following function ex sin 5x  ?


If x = a sec θ, y = b tan θ, prove that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?


\[\text { If x } = a\left( \cos t + t \sin t \right) \text { and y} = a\left( \sin t - t \cos t \right),\text { then find the value of } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?


If y = |x − x2|, then find \[\frac{d^2 y}{d x^2}\] ?


If f(x) = (cos x + i sin x) (cos 2x + i sin 2x) (cos 3x + i sin 3x) ...... (cos nx + i sin nx) and f(1) = 1, then f'' (1) is equal to

 


If \[f\left( x \right) = \frac{\sin^{- 1} x}{\sqrt{1 - x^2}}\] then (1 − x)2 '' (x) − xf(x) =

 


Let f(x) be a polynomial. Then, the second order derivative of f(ex) is



Find the height of a cylinder, which is open at the top, having a given surface area, greatest volume, and radius r.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×