Advertisements
Advertisements
प्रश्न
Differentiate \[\sqrt{\frac{1 + \sin x}{1 - \sin x}}\] ?
उत्तर
\[\text{Let } y = \sqrt{\frac{1 + \sin x}{1 - \sin x}}\]
\[\text{ Differentiate it with respect to x we get }, \]
\[\frac{d y}{d x} = \frac{d}{dx} \left( \frac{1 + \sin x}{1 - \sin x} \right)^\frac{1}{2} \]
\[ = \frac{1}{2} \left( \frac{1 + \sin x}{1 - \sin x} \right)^{\frac{1}{2} - 1} \frac{d}{dx}\left( \frac{1 + \sin x}{1 - \sin x} \right)\]
\[ = \frac{1}{2} \left( \frac{1 - \sin x}{1 + \sin x} \right)^\frac{1}{2} \left[ \frac{\left( 1 - \sin x \right)\left( \cos x \right) - \left( 1 + \sin x \right)\left( - \cos x \right)}{\left( 1 - \sin x \right)^2} \right]\]
\[ = \frac{1}{2}\frac{\left( 1 - \sin x \right)^\frac{1}{2}}{\left( 1 + \sin x \right)^\frac{1}{2}}\left[ \frac{\cos x - \cos x \sin x + \cos x + \sin x \cos x}{\left( 1 - \sin x \right)^2} \right]\]
\[ = \frac{1}{2} \times \frac{2\cos x}{\sqrt{1 + \sin x}\left( 1 - \sin x \right)\frac{3}{2}}\]
\[ = \frac{\cos x}{\sqrt{1 + \sin x}\left( 1 - \sin x \right)\frac{3}{2}}\]
\[ = \frac{\cos x}{\sqrt{1 + \sin x}\sqrt{1 - \sin x}\left( 1 - \sin x \right)}\]
\[ = \frac{\cos x}{\sqrt{1 - \sin^2 x} \times \left( 1 - \sin x \right)}\]
\[ = \frac{\cos x}{\cos x\left( 1 - \sin x \right)} \left[ \text{Using } 1 - \sin^2 x = \cos^2 x \right]\]
\[ = \frac{1}{\left( 1 - \sin x \right)} \times \frac{\left( 1 + \sin x \right)}{\left( 1 + \sin x \right)}\]
\[ = \frac{\left( 1 + \sin x \right)}{\left( 1 - \sin^2 x \right)}\]
\[ = \frac{1 + \sin x}{\cos^2 x}\]
\[ = \frac{1}{\cos x}\left( \frac{1}{\cos x} + \frac{\sin x}{\cos x} \right)\]
\[ = \sec x\left( \sec x + \tan x \right)\]
\[\text{Hence }, \frac{dy}{dx} = \sec x\left( \sec x + \tan x \right)\]
APPEARS IN
संबंधित प्रश्न
If y = xx, prove that `(d^2y)/(dx^2)−1/y(dy/dx)^2−y/x=0.`
Differentiate the following functions from first principles e−x.
Differentiate \[\log \sqrt{\frac{1 - \cos x}{1 + \cos x}}\] ?
Differentiate \[\frac{3 x^2 \sin x}{\sqrt{7 - x^2}}\] ?
Differentiate \[\log \sqrt{\frac{x - 1}{x + 1}}\] ?
If \[y = \log \sqrt{\frac{1 + \tan x}{1 - \tan x}}\] prove that \[\frac{dy}{dx} = \sec 2x\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{1 + \sqrt{1 - x^2}} \right\}, - 1 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{2^{x + 1}}{1 - 4^x} \right), - \infty < x < 0\] ?
Differentiate \[\tan^{- 1} \left( \frac{\sqrt{1 + a^2 x^2} - 1}{ax} \right), x \neq 0\] ?
Differentiate \[\tan^{- 1} \left( \frac{a + x}{1 - ax} \right)\] ?
If \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, - \frac{1}{2} < x < 0, \text{ find } \frac{dy}{dx} \] ?
Find \[\frac{dy}{dx}\] in the following case \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] ?
Find \[\frac{dy}{dx}\] in the following case \[e^{x - y} = \log \left( \frac{x}{y} \right)\] ?
If \[\sin \left( xy \right) + \frac{y}{x} = x^2 - y^2 , \text{ find} \frac{dy}{dx}\] ?
If \[y = \left\{ \log_{\cos x} \sin x \right\} \left\{ \log_{\sin x} \cos x \right\}^{- 1} + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right), \text{ find } \frac{dy}{dx} \text{ at }x = \frac{\pi}{4}\] ?
Differentiate \[x^{x \cos x +} \frac{x^2 + 1}{x^2 - 1}\] ?
If \[xy = e^{x - y} , \text{ find } \frac{dy}{dx}\] ?
If \[y = \left( \cos x \right)^{\left( \cos x \right)^{\left( \cos x \right) . . . \infty}}\],prove that \[\frac{dy}{dx} = - \frac{y^2 \tan x}{\left( 1 - y \log \cos x \right)}\]?
Find \[\frac{dy}{dx}\] , when \[x = b \sin^2 \theta \text{ and } y = a \cos^2 \theta\] ?
Find \[\frac{dy}{dx}\] , when \[x = \frac{3 at}{1 + t^2}, \text{ and } y = \frac{3 a t^2}{1 + t^2}\] ?
If \[x = a\left( t + \frac{1}{t} \right) \text{ and y } = a\left( t - \frac{1}{t} \right)\] ,prove that \[\frac{dy}{dx} = \frac{x}{y}\]?
If \[x = a \left( \theta - \sin \theta \right) and, y = a \left( 1 + \cos \theta \right), \text { find } \frac{dy}{dx} \text{ at }\theta = \frac{\pi}{3} \] ?
Differentiate log (1 + x2) with respect to tan−1 x ?
If \[f\left( 1 \right) = 4, f'\left( 1 \right) = 2\] find the value of the derivative of \[\log \left( f\left( e^x \right) \right)\] w.r. to x at the point x = 0 ?
Let g (x) be the inverse of an invertible function f (x) which is derivable at x = 3. If f (3) = 9 and `f' (3) = 9`, write the value of `g' (9)`.
If \[\frac{\pi}{2} \leq x \leq \frac{3\pi}{2} \text { and y } = \sin^{- 1} \left( \sin x \right), \text { find } \frac{dy}{dx} \] ?
The differential coefficient of f (log x) w.r.t. x, where f (x) = log x is ___________ .
If \[y = \left( 1 + \frac{1}{x} \right)^x , \text{ then} \frac{dy}{dx} =\] ____________ .
The derivative of \[\cos^{- 1} \left( 2 x^2 - 1 \right)\] with respect to \[\cos^{- 1} x\] is ___________ .
Find the second order derivatives of the following function x3 + tan x ?
If y = x3 log x, prove that \[\frac{d^4 y}{d x^4} = \frac{6}{x}\] ?
If \[y = e^{2x} \left( ax + b \right)\] show that \[y_2 - 4 y_1 + 4y = 0\] ?
If `x = sin(1/2 log y)` show that (1 − x2)y2 − xy1 − a2y = 0.
If y = cosec−1 x, x >1, then show that \[x\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + \left( 2 x^2 - 1 \right)\frac{dy}{dx} = 0\] ?
If y = axn+1 + bx−n, then \[x^2 \frac{d^2 y}{d x^2} =\]
If y2 = ax2 + bx + c, then \[y^3 \frac{d^2 y}{d x^2}\] is
Differentiate \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right) w . r . t . \sin^{- 1} \frac{2x}{1 + x^2},\]tan-11+x2-1x w.r.t. sin-12x1+x2, if x ∈ (–1, 1) .
Differentiate the following with respect to x:
\[\cot^{- 1} \left( \frac{1 - x}{1 + x} \right)\]
Range of 'a' for which x3 – 12x + [a] = 0 has exactly one real root is (–∞, p) ∪ [q, ∞), then ||p| – |q|| is ______.