मराठी

The Differential Coefficient of F (Log X) W.R.T. X, Where F (X) = Log X is - Mathematics

Advertisements
Advertisements

प्रश्न

The differential coefficient of f (log x) w.r.t. x, where f (x) = log x is ___________ .

पर्याय

  • \[\frac{x}{\log x}\]

  • \[\frac{\log x}{x}\]

  • \[\left( x \log x \right)^{- 1}\]

  • none of these

MCQ

उत्तर

\[\left( x \log x \right)^{- 1}\] 

We have,

\[f\left( x \right) = \log x\]
\[ \Rightarrow f\left( \log x \right) = \log\left( \log x \right)\]
\[ \Rightarrow f'\left( \log x \right) = \frac{1}{\log x}\frac{d}{dx}\left( \log x \right)\]
\[ \Rightarrow f'\left( \log x \right) = \frac{1}{x \log x}\]
\[ \Rightarrow f'\left( \log x \right) = \left( x \log x \right)^{- 1}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Differentiation - Exercise 11.10 [पृष्ठ ११९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 11 Differentiation
Exercise 11.10 | Q 2 | पृष्ठ ११९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Differentiate the following functions from first principles x2ex ?


Differentiate \[\sqrt{\frac{a^2 - x^2}{a^2 + x^2}}\] ?


Differentiate \[\sin \left( \frac{1 + x^2}{1 - x^2} \right)\] ?


Differentiate \[\tan \left( e^{\sin x }\right)\] ?


Differentiate \[\frac{e^x \log x}{x^2}\] ? 


Differentiate \[\tan^{- 1} \left( e^x \right)\] ?


Differentiate \[e^{\sin^{- 1} 2x}\] ?


Differentiate \[\log \left( \tan^{- 1} x \right)\]? 


Differentiate \[x \sin 2x + 5^x + k^k + \left( \tan^2 x \right)^3\] ?


If \[y = \log \left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]prove that \[\frac{dy}{dx} = \frac{x - 1}{2x \left( x + 1 \right)}\] ?

 


If \[y = \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}\] ,  prove that \[\left( 1 - x^2 \right) \frac{dy}{dx} = x + \frac{y}{x}\] ?


Differentiate \[\tan^{- 1} \left\{ \frac{x}{\sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?


Differentiate \[\sin^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?


If  \[y = se c^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right), x > 0 . \text{ Find} \frac{dy}{dx}\] ?

 


If the derivative of tan−1 (a + bx) takes the value 1 at x = 0, prove that 1 + a2 = b ?


If \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, - \frac{1}{2} < x < 0, \text{ find } \frac{dy}{dx} \] ?


Find  \[\frac{dy}{dx}\] in the following case \[\left( x + y \right)^2 = 2axy\] ?

 


If \[\sin^2 y + \cos xy = k,\] find  \[\frac{dy}{dx}\] at \[x = 1 , \] \[y = \frac{\pi}{4} .\] 


Differentiate \[e^{\sin x }+ \left( \tan x \right)^x\] ?


find  \[\frac{dy}{dx}\]  \[y = \frac{\left( x^2 - 1 \right)^3 \left( 2x - 1 \right)}{\sqrt{\left( x - 3 \right) \left( 4x - 1 \right)}}\] ?

 


If \[x^{16} y^9 = \left( x^2 + y \right)^{17}\] ,prove that \[x\frac{dy}{dx} = 2 y\] ?


If  \[\left( \cos x \right)^y = \left( \cos y \right)^x , \text{ find } \frac{dy}{dx}\] ?

 


Find \[\frac{dy}{dx}\] ,when \[x = \frac{e^t + e^{- t}}{2} \text{ and } y = \frac{e^t - e^{- t}}{2}\] ?


Find  \[\frac{dy}{dx}\] , when  \[x = \frac{1 - t^2}{1 + t^2} \text{ and y } = \frac{2 t}{1 + t^2}\] ?

 


If \[x = \left( t + \frac{1}{t} \right)^a , y = a^{t + \frac{1}{t}} , \text{ find } \frac{dy}{dx}\] ?


Differentiate \[\left( \cos x \right)^{\sin x }\] with respect to \[\left( \sin x \right)^{\cos x }\]?


Differentiate \[\cos^{- 1} \left( 4 x^3 - 3x \right)\] with respect to \[\tan^{- 1} \left( \frac{\sqrt{1 - x^2}}{x} \right), \text{ if }\frac{1}{2} < x < 1\] ? 


If \[\pi \leq x \leq 2\pi \text { and y } = \cos^{- 1} \left( \cos x \right), \text { find } \frac{dy}{dx}\] ?


If \[f\left( 0 \right) = f\left( 1 \right) = 0, f'\left( 1 \right) = 2 \text { and y } = f \left( e^x \right) e^{f \left( x \right)}\] write the value of \[\frac{dy}{dx} \text{ at x } = 0\] ?


If \[y = \log_a x, \text{ find } \frac{dy}{dx} \] ? 


The derivative of the function \[\cot^{- 1} \left| \left( \cos 2 x \right)^{1/2} \right| \text{ at } x = \pi/6 \text{ is }\] ______ .


Differential coefficient of sec(tan−1 x) is ______.


Given  \[f\left( x \right) = 4 x^8 , \text { then }\] _________________ .


If \[f\left( x \right) = \sqrt{x^2 + 6x + 9}, \text { then } f'\left( x \right)\] is equal to ______________ .


If \[y = \frac{1}{1 + x^{a - b} +^{c - b}} + \frac{1}{1 + x^{b - c} + x^{a - c}} + \frac{1}{1 + x^{b - a} + x^{c - a}}\] then \[\frac{dy}{dx}\]  is equal to ______________ .


If \[y = \tan^{- 1} \left( \frac{\sin x + \cos x}{\cos x - \sin x} \right), \text { then  } \frac{dy}{dx}\] is equal to ___________ .


If x = a (1 − cos3 θ), y = a sin3 θ, prove that \[\frac{d^2 y}{d x^2} = \frac{32}{27a} \text { at } \theta = \frac{\pi}{6}\] ?


Find \[\frac{d^2 y}{d x^2}\] where \[y = \log \left( \frac{x^2}{e^2} \right)\] ?


If y = sin (log x), prove that \[x^2 \frac{d^2 y}{d x^2} + x\frac{dy}{dx} + y = 0\] ?


If x = f(t) and y = g(t), then write the value of \[\frac{d^2 y}{d x^2}\] ?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×