Advertisements
Advertisements
प्रश्न
Differential coefficient of sec(tan−1 x) is ______.
पर्याय
`x/(1 + x^2)`
`x sqrt(1 + x^2)`
`1/sqrt(1 + x^2)`
`x/sqrt(1 + x^2)`
उत्तर
`x/sqrt(1 + x^2)`
Explanation:
y = sec(tan−1 x)
`dy/dx = d/dx sec(tan^-1 x)`
`dy/dx = sec(tan^-1 x). tan(tan^-1 x) × d/dx (tan^-1 x)`
`dy/dx = sec(tan^-1 x). tan(tan^-1 x) × 1/sqrt(1 + x^2)`
`dy/dx = sec(tan^-1 x). x × 1/sqrt(1 + x^2) ...[tan(tan^-1 x) = x]`
`dy/dx = y × x × 1/sqrt(1 + x^2)`
`dy/dx = y(x/sqrt(1 + x^2))`
`dy/dx = (x/sqrt(1 + x^2))y`
This is the equation of differential equation which have coefficient `x/sqrt(1 + x^2)`.
APPEARS IN
संबंधित प्रश्न
Differentiate \[\sqrt{\frac{a^2 - x^2}{a^2 + x^2}}\] ?
Differentiate \[\frac{e^{2x} + e^{- 2x}}{e^{2x} - e^{- 2x}}\] ?
Differentiate \[\sin^{- 1} \left( \frac{x}{\sqrt{x^2 + a^2}} \right)\] ?
Differentiate \[\frac{x^2 \left( 1 - x^2 \right)}{\cos 2x}\] ?
If \[y = \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}\] , prove that \[\left( 1 - x^2 \right) \frac{dy}{dx} = x + \frac{y}{x}\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{\sin x + \cos x}{\sqrt{2}} \right\}, - \frac{3 \pi}{4} < x < \frac{\pi}{4}\] ?
If \[y \sqrt{1 - x^2} + x \sqrt{1 - y^2} = 1\] ,prove that \[\frac{dy}{dx} = - \sqrt{\frac{1 - y^2}{1 - x^2}}\] ?
Differentiate \[x^{\tan^{- 1} x }\] ?
Differentiate \[x^\left( \sin x - \cos x \right) + \frac{x^2 - 1}{x^2 + 1}\] ?
Find \[\frac{dy}{dx}\] \[y = x^x + \left( \sin x \right)^x\] ?
If \[x^y + y^x = \left( x + y \right)^{x + y} , \text{ find } \frac{dy}{dx}\] ?
If \[y = x \sin y\] , prove that \[\frac{dy}{dx} = \frac{y}{x \left( 1 - x \cos y \right)}\] ?
If \[y^x + x^y + x^x = a^b\] ,find \[\frac{dy}{dx}\] ?
If \[\left( \cos x \right)^y = \left( \cos y \right)^x , \text{ find } \frac{dy}{dx}\] ?
If \[y = \sqrt{\cos x + \sqrt{\cos x + \sqrt{\cos x + . . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sin x}{1 - 2 y}\] ?
Find \[\frac{dy}{dx}\] ,When \[x = a \left( 1 - \cos \theta \right) \text{ and } y = a \left( \theta + \sin \theta \right) \text{ at } \theta = \frac{\pi}{2}\] ?
Find \[\frac{dy}{dx}\], when \[x = a \left( \cos \theta + \theta \sin \theta \right) \text{ and }y = a \left( \sin \theta - \theta \cos \theta \right)\] ?
If \[x = \cos t \text{ and y } = \sin t,\] prove that \[\frac{dy}{dx} = \frac{1}{\sqrt{3}} \text { at } t = \frac{2 \pi}{3}\] ?
Differentiate (log x)x with respect to log x ?
Differentiate \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\]\[x \in \left( 0, 1 \right)\] ?
\[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cot^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right),\text { if }0 < x < 1\] ?
If f (x) is an odd function, then write whether `f' (x)` is even or odd ?
If \[f\left( x \right) = \tan^{- 1} \sqrt{\frac{1 + \sin x}{1 - \sin x}}, 0 \leq x \leq \pi/2, \text{ then } f' \left( \pi/6 \right) \text{ is }\] _________ .
If \[\sin \left( x + y \right) = \log \left( x + y \right), \text { then } \frac{dy}{dx} =\] ___________ .
If \[\sqrt{1 - x^6} + \sqrt{1 - y^6} = a^3 \left( x^3 - y^3 \right)\] then \[\frac{dy}{dx}\] is equal to ____________ .
Find the second order derivatives of the following function x3 + tan x ?
Find the second order derivatives of the following function ex sin 5x ?
If x = a cos θ, y = b sin θ, show that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?
If \[y = e^{\tan^{- 1} x}\] prove that (1 + x2)y2 + (2x − 1)y1 = 0 ?
If x = 4z2 + 5, y = 6z2 + 7z + 3, find \[\frac{d^2 y}{d x^2}\] ?
If x = a cos nt − b sin nt and \[\frac{d^2 x}{dt} = \lambda x\] then find the value of λ ?
If x = a cos nt − b sin nt, then \[\frac{d^2 x}{d t^2}\] is
If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =
If y = (sin−1 x)2, then (1 − x2)y2 is equal to
If \[y = \log_e \left( \frac{x}{a + bx} \right)^x\] then x3 y2 =
If y = xx, prove that \[\frac{d^2 y}{d x^2} - \frac{1}{y} \left( \frac{dy}{dx} \right)^2 - \frac{y}{x} = 0 .\]