Advertisements
Advertisements
प्रश्न
If \[y = \log_e \left( \frac{x}{a + bx} \right)^x\] then x3 y2 =
पर्याय
(xy1 − y)2
(1 + y)2
\[\left( \frac{y - x y_1}{y_1} \right)^2\]
none of these
उत्तर
(a) (xy1 − y)2
Here,
\[y = \log_e \left( \frac{x}{a + bx} \right)^x \]
\[ \Rightarrow y = x \log_e \left( \frac{x}{a + bx} \right) \]
\[ \Rightarrow y_1 = \log_e \left( \frac{x}{a + bx} \right) + x \times \frac{a + bx}{x}\left( \frac{1}{a + bx} - \frac{bx}{\left( a + bx \right)^2} \right)\]
\[ \Rightarrow y_1 = \log_e \left( \frac{x}{a + bx} \right) + \left( \frac{a}{a + bx} \right) . . . \left( 1 \right)\]
\[ \Rightarrow y_1 = \frac{y}{x} + \left( \frac{a}{a + bx} \right) \left[ \because y = x \log_e \left( \frac{x}{a + bx} \right) \right]\]
\[ \Rightarrow \frac{x y_1 - y}{x} = \frac{a}{a + bx} . . . \left( 2 \right)\]
\[\text{Differentiating } \left( 1 \right) \text { we get }, \]
\[ y_2 = \frac{a + bx}{x}\left( \frac{a + bx - bx}{\left( a + bx \right)^2} \right) - \frac{ba}{\left( a + bx \right)^2}\]
\[ \Rightarrow y_2 = \frac{a}{x\left( a + bx \right)} - \frac{ba}{\left( a + bx \right)^2}\]
\[ \Rightarrow y_2 = \frac{a\left( a + bx \right) - abx}{x \left( a + bx \right)^2}\]
\[ \Rightarrow y_2 = \frac{a^2}{x \left( a + bx \right)^2}\]
\[ \Rightarrow y_2 = \frac{\left( x y_1 - y \right)^2}{x^3} \left[ \text { Using }
\left( 2 \right) \right]\]
\[ \Rightarrow x^3 y_2 = \left( x y_1 - y \right)^2 \]
APPEARS IN
संबंधित प्रश्न
Differentiate the following functions from first principles log cosec x ?
Differentiate (log sin x)2 ?
Differentiate \[e^{\tan^{- 1}} \sqrt{x}\] ?
Differentiate \[\log \left( \cos x^2 \right)\] ?
If \[y = \sqrt{x + 1} + \sqrt{x - 1}\] , prove that \[\sqrt{x^2 - 1}\frac{dy}{dx} = \frac{1}{2}y\] ?
If \[y = \frac{1}{2} \log \left( \frac{1 - \cos 2x }{1 + \cos 2x} \right)\] , prove that \[\frac{ dy }{ dx } = 2 \text{cosec }2x \] ?
Differentiate \[\tan^{- 1} \left( \frac{a + b \tan x}{b - a \tan x} \right)\] ?
If \[y = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), 0 < x < 1,\] prove that \[\frac{dy}{dx} = \frac{4}{1 + x^2}\] ?
If \[y = \cot^{- 1} \left\{ \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} \right\}\], show that \[\frac{dy}{dx}\] is independent of x. ?
If the derivative of tan−1 (a + bx) takes the value 1 at x = 0, prove that 1 + a2 = b ?
If \[y = \sin^{- 1} \left( 6x\sqrt{1 - 9 x^2} \right), - \frac{1}{3\sqrt{2}} < x < \frac{1}{3\sqrt{2}}\] \[\frac{dy}{dx} \] ?
Find \[\frac{dy}{dx}\] in the following case \[4x + 3y = \log \left( 4x - 3y \right)\] ?
Find \[\frac{dy}{dx}\] in the following case \[\tan^{- 1} \left( x^2 + y^2 \right) = a\] ?
If \[y \sqrt{x^2 + 1} = \log \left( \sqrt{x^2 + 1} - x \right)\] ,Show that \[\left( x^2 + 1 \right) \frac{dy}{dx} + xy + 1 = 0\] ?
Differentiate \[x^{\sin x}\] ?
Differentiate \[x^{\cos^{- 1} x}\] ?
Differentiate \[\left( \sin x \right)^{\cos x}\] ?
Find \[\frac{dy}{dx}\] \[y = \frac{e^{ax} \cdot \sec x \cdot \log x}{\sqrt{1 - 2x}}\] ?
Find \[\frac{dy}{dx}\] \[y = e^{3x} \sin 4x \cdot 2^x\] ?
Find \[\frac{dy}{dx}\] \[y = x^x + \left( \sin x \right)^x\] ?
If \[e^{x + y} - x = 0\] ,prove that \[\frac{dy}{dx} = \frac{1 - x}{x}\] ?
If \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] , prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?
If \[y = \left( \cos x \right)^{\left( \cos x \right)^{\left( \cos x \right) . . . \infty}}\],prove that \[\frac{dy}{dx} = - \frac{y^2 \tan x}{\left( 1 - y \log \cos x \right)}\]?
Find \[\frac{dy}{dx}\], When \[x = a \left( \theta + \sin \theta \right) \text{ and } y = a \left( 1 - \cos \theta \right)\] ?
If \[x = \left( t + \frac{1}{t} \right)^a , y = a^{t + \frac{1}{t}} , \text{ find } \frac{dy}{dx}\] ?
If \[x = a\sin2t\left( 1 + \cos2t \right) \text { and y } = b\cos2t\left( 1 - \cos2t \right)\] , show that at \[t = \frac{\pi}{4}, \frac{dy}{dx} = \frac{b}{a}\] ?
\[\text { If }x = \cos t\left( 3 - 2 \cos^2 t \right), y = \sin t\left( 3 - 2 \sin^2 t \right) \text { find the value of } \frac{dy}{dx}\text{ at }t = \frac{\pi}{4}\] ?
Write the derivative of sinx with respect to cos x ?
Differentiate x2 with respect to x3
Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { if } 0 < x < 1\] ?
The derivative of the function \[\cot^{- 1} \left| \left( \cos 2 x \right)^{1/2} \right| \text{ at } x = \pi/6 \text{ is }\] ______ .
If \[f\left( x \right) = \tan^{- 1} \sqrt{\frac{1 + \sin x}{1 - \sin x}}, 0 \leq x \leq \pi/2, \text{ then } f' \left( \pi/6 \right) \text{ is }\] _________ .
If \[x^y = e^{x - y} ,\text{ then } \frac{dy}{dx}\] is __________ .
Find the second order derivatives of the following function log (sin x) ?
If \[y = \frac{\log x}{x}\] show that \[\frac{d^2 y}{d x^2} = \frac{2 \log x - 3}{x^3}\] ?
\[\text{ If x } = a\left( \cos t + \log \tan\frac{t}{2} \right) \text { and y } = a\left( \sin t \right), \text { evaluate } \frac{d^2 y}{d x^2} \text { at t } = \frac{\pi}{3} \] ?
\[\text { If x } = a\left( \cos2t + 2t \sin2t \right)\text { and y } = a\left( \sin2t - 2t \cos2t \right), \text { then find } \frac{d^2 y}{d x^2} \] ?
If x = f(t) and y = g(t), then write the value of \[\frac{d^2 y}{d x^2}\] ?
If f(x) = (cos x + i sin x) (cos 2x + i sin 2x) (cos 3x + i sin 3x) ...... (cos nx + i sin nx) and f(1) = 1, then f'' (1) is equal to
Let f(x) be a polynomial. Then, the second order derivative of f(ex) is