Advertisements
Advertisements
प्रश्न
If \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] , prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?
उत्तर
\[\text{ We have}, x \sin\left( a + y \right) + \sin a \cos\left( a + y \right) = 0\]
Differentiating with respect to x using chain rule,
\[\frac{d}{dx}\left[ x \sin\left( a + y \right) + \sin a \cos\left( a + y \right) \right] = 0\]
\[ \Rightarrow x\frac{d}{dx}\sin\left( a + y \right) + \sin\left( a + y \right)\frac{d}{dx}\left( x \right) + \sin a\frac{d}{dx}\cos\left( a + y \right) + \cos\left( a + y \right)\frac{d}{dx}\sin a = 0\]
\[ \Rightarrow x \cos\left( a + y \right)\left( 0 + \frac{dy}{dx} \right) + \sin\left( a + y \right) + \sin a\left\{ - \sin\left( a + y \right)\frac{dy}{dx} \right\} + 0 = 0\]
\[ \Rightarrow \left[ x \cos\left( a + y \right) - \sin a \sin\left( a + y \right) \right]\frac{dy}{dx} + \sin\left( a + y \right) = 0\]
\[ \Rightarrow \frac{dy}{dx} = - \frac{\sin\left( a + y \right)}{x \cos\left( a + y \right) - \sin a \sin\left( a + y \right)}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{- \sin\left( a + y \right)}{\left\{ - \frac{\sin a \cos\left( a + y \right)}{\sin\left( a + y \right)} \right\}\cos\left( a + y \right) - \sin a \sin\left( a + y \right)} .................\left[ \because x = - \frac{\sin a \cos\left( a + y \right)}{\sin\left( a + y \right)} \right]\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a \cos^2 \left( a + y \right) + \sin a \sin^2 \left( a + y \right)}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a\left[ \cos^2 \left( a + y \right) + \sin^2 \left( a + y \right) \right]}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a} ..............\left[ \because \cos^2 \left( a + y \right) + \sin^2 \left( a + y \right) = 1 \right]\]
APPEARS IN
संबंधित प्रश्न
Differentiate sin (3x + 5) ?
Differentiate tan (x° + 45°) ?
Differentiate sin2 (2x + 1) ?
Differentiate log7 (2x − 3) ?
Differentiate \[\sqrt{\frac{a^2 - x^2}{a^2 + x^2}}\] ?
Differentiate \[\sqrt{\frac{1 - x^2}{1 + x^2}}\] ?
Differentiate \[\log \left( \frac{\sin x}{1 + \cos x} \right)\] ?
Differentiate \[\log \sqrt{\frac{1 - \cos x}{1 + \cos x}}\] ?
Differentiate \[\sin^{- 1} \left( \frac{x}{\sqrt{x^2 + a^2}} \right)\] ?
Differentiate \[e^{ax} \sec x \tan 2x\] ?
If \[y = \left( x - 1 \right) \log \left( x - 1 \right) - \left( x + 1 \right) \log \left( x + 1 \right)\] , prove that \[\frac{dy}{dc} = \log \left( \frac{x - 1}{1 + x} \right)\] ?
If \[y = \sqrt{a^2 - x^2}\] prove that \[y\frac{dy}{dx} + x = 0\] ?
Differentiate \[\sin^{- 1} \left( 2 x^2 - 1 \right), 0 < x < 1\] ?
Differentiate \[\sin^{- 1} \left( 1 - 2 x^2 \right), 0 < x < 1\] ?
Differentiate \[\cos^{- 1} \left\{ \frac{\cos x + \sin x}{\sqrt{2}} \right\}, - \frac{\pi}{4} < x < \frac{\pi}{4}\] ?
Differentiate \[\tan^{- 1} \left( \frac{4x}{1 - 4 x^2} \right), - \frac{1}{2} < x < \frac{1}{2}\] ?
Differentiate
\[\tan^{- 1} \left( \frac{\cos x + \sin x}{\cos x - \sin x} \right), \frac{\pi}{4} < x < \frac{\pi}{4}\] ?
If \[x y^2 = 1,\] prove that \[2\frac{dy}{dx} + y^3 = 0\] ?
If \[\log \sqrt{x^2 + y^2} = \tan^{- 1} \left( \frac{y}{x} \right)\] Prove that \[\frac{dy}{dx} = \frac{x + y}{x - y}\] ?
If \[\tan^{- 1} \left( \frac{x^2 - y^2}{x^2 + y^2} \right) = a\] Prove that \[\frac{dy}{dx} = \frac{x}{y}\frac{\left( 1 - \tan a \right)}{\left( 1 + \tan a \right)}\] ?
If \[\cos y = x \cos \left( a + y \right), \text{ with } \cos a \neq \pm 1, \text{ prove that } \frac{dy}{dx} = \frac{\cos^2 \left( a + y \right)}{\sin a}\] ?
Differentiate \[x^{x^2 - 3} + \left( x - 3 \right)^{x^2}\] ?
If \[\left( \sin x \right)^y = \left( \cos y \right)^x ,\], prove that \[\frac{dy}{dx} = \frac{\log \cos y - y cot x}{\log \sin x + x \tan y}\] ?
If \[\left( \sin x \right)^y = x + y\] , prove that \[\frac{dy}{dx} = \frac{1 - \left( x + y \right) y \cot x}{\left( x + y \right) \log \sin x - 1}\] ?
If \[y = \sqrt{x + \sqrt{x + \sqrt{x + . . . to \infty ,}}}\] prove that \[\frac{dy}{dx} = \frac{1}{2 y - 1}\] ?
Differentiate (log x)x with respect to log x ?
Differentiate\[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right)\] with respect to \[\sin^{-1} \left( \frac{2x}{1 + x^2} \right)\], If \[- 1 < x < 1, x \neq 0 .\] ?
If \[f'\left( 1 \right) = 2 \text { and y } = f \left( \log_e x \right), \text { find} \frac{dy}{dx} \text { at }x = e\] ?
If \[f'\left( x \right) = \sqrt{2 x^2 - 1} \text { and y } = f \left( x^2 \right)\] then find \[\frac{dy}{dx} \text { at } x = 1\] ?
If \[y = \log \sqrt{\tan x}, \text{ write } \frac{dy}{dx} \] ?
If f (x) is an even function, then write whether `f' (x)` is even or odd ?
If f (x) is an odd function, then write whether `f' (x)` is even or odd ?
If \[y = \tan^{- 1} \left( \frac{\sin x + \cos x}{\cos x - \sin x} \right), \text { then } \frac{dy}{dx}\] is equal to ___________ .
If y = log (sin x), prove that \[\frac{d^3 y}{d x^3} = 2 \cos \ x \ {cosec}^3 x\] ?
If x = a (θ + sin θ), y = a (1 + cos θ), prove that \[\frac{d^2 y}{d x^2} = - \frac{a}{y^2}\] ?
If \[y = e^{\tan^{- 1} x}\] prove that (1 + x2)y2 + (2x − 1)y1 = 0 ?
\[\text { If x } = a\left( \cos t + t \sin t \right) \text { and y} = a\left( \sin t - t \cos t \right),\text { then find the value of } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?
\[\frac{d^{20}}{d x^{20}} \left( 2 \cos x \cos 3 x \right) =\]