मराठी

Differentiate √ a 2 − X 2 a 2 + X 2 ? - Mathematics

Advertisements
Advertisements

प्रश्न

Differentiate \[\sqrt{\frac{a^2 - x^2}{a^2 + x^2}}\] ?

बेरीज

उत्तर

\[\text{ Let } y = \sqrt{\frac{a^2 - x^2}{a^2 + x^2}}\]

\[ \Rightarrow y = \left( \frac{a^2 - x^2}{a^2 + x^2} \right)^\frac{1}{2} \]

\[\text{Differentiate it with respect to x we get}, \]

\[\frac{d y}{d x} = \frac{d}{dx} \left( \frac{a^2 - x^2}{a^2 + x^2} \right)^\frac{1}{2} \]

\[ = \frac{1}{2} \left( \frac{a^2 - x^2}{a^2 + x^2} \right)^{\frac{1}{2} - 1} \times \frac{d}{dx}\left( \frac{a^2 - x^2}{a^2 + x^2} \right) \left[ \text{Using chain rule} \right]\]

\[ = \frac{1}{2} \left( \frac{a^2 - x^2}{a^2 + x^2} \right)^\frac{- 1}{2} \times \left\{ \frac{\left( a^2 + x^2 \right)\frac{d}{dx}\left( a^2 - x^2 \right) - \left( a^2 - x^2 \right)\frac{d}{dx}\left( a^2 + x^2 \right)}{\left( a^2 + x^2 \right)^2} \right\} \]

\[ = \frac{1}{2} \left( \frac{a^2 + x^2}{a^2 - x^2} \right)^\frac{1}{2} \left\{ \frac{- 2x\left( a^2 + x^2 \right) - 2x\left( a^2 - x^2 \right)}{\left( a^2 + x^2 \right)^2} \right\}\]

\[ = \frac{1}{2} \left( \frac{a^2 + x^2}{a^2 - x^2} \right)^\frac{1}{2} \left\{ \frac{- 2x a^2 - 2 x^3 - 2x a^2 + 2 x^3}{\left( a^2 + x^2 \right)^2} \right\}\]

\[ = \frac{1}{2} \left( \frac{a^2 + x^2}{a^2 - x^2} \right)^\frac{1}{2} \left\{ \frac{- 4x a^2}{\left( a^2 + x^2 \right)^2} \right\}\]

\[ = \frac{- 2x a^2}{\sqrt{a^2 - x^2} \left( a^2 + x^2 \right)^\frac{3}{2}}\]

\[So, \frac{d}{dx}\left( \sqrt{\frac{a^2 - x^2}{a^2 + x^2}} \right) = \frac{- 2 a^2 x}{\sqrt{a^2 - x^2} \left( a^2 + x^2 \right)^\frac{3}{2}}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Differentiation - Exercise 11.02 [पृष्ठ ३७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 11 Differentiation
Exercise 11.02 | Q 14 | पृष्ठ ३७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

 

If y = xx, prove that `(d^2y)/(dx^2)−1/y(dy/dx)^2−y/x=0.`

 

Differentiate sin (log x) ?


Differentiate etan x ?


Differentiate \[\sin \left( 2 \sin^{- 1} x \right)\] ?


Differentiate \[\sin^{- 1} \left( \frac{x}{\sqrt{x^2 + a^2}} \right)\] ?


Differentiate \[\log \sqrt{\frac{x - 1}{x + 1}}\] ?


If \[y = \frac{1}{2} \log \left( \frac{1 - \cos 2x }{1 + \cos 2x} \right)\] , prove that \[\frac{ dy }{ dx } = 2 \text{cosec }2x \] ?


Differentiate \[\cos^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?


Differentiate \[\sin^{- 1} \left\{ \frac{\sqrt{1 + x} + \sqrt{1 - x}}{2} \right\}, 0 < x < 1\] ?


Differentiate \[\tan^{- 1} \left( \frac{\sin x}{1 + \cos x} \right), - \pi < x < \pi\] ?


If  \[y = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), 0 < x < 1,\] prove that  \[\frac{dy}{dx} = \frac{4}{1 + x^2}\] ?

 


If \[xy = 1\] prove that \[\frac{dy}{dx} + y^2 = 0\] ?


If \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?


Differentiate \[\left( \log x \right)^{ \log x }\] ?


Differentiate  \[\sin \left( x^x \right)\] ?


Differentiate  \[\left( x^x \right) \sqrt{x}\] ?


Differentiate  \[x^{x \cos x +} \frac{x^2 + 1}{x^2 - 1}\]  ?


Find  \[\frac{dy}{dx}\]  \[y = \left( \sin x \right)^{\cos x} + \left( \cos x \right)^{\sin x}\] ?

 


If \[y^x = e^{y - x}\] ,prove that \[\frac{dy}{dx} = \frac{\left( 1 + \log y \right)^2}{\log y}\] ?


If \[\left( \sin x \right)^y = \left( \cos y \right)^x ,\], prove that \[\frac{dy}{dx} = \frac{\log \cos y - y cot x}{\log \sin x + x \tan y}\] ?


If \[y = \sqrt{\cos x + \sqrt{\cos x + \sqrt{\cos x + . . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sin x}{1 - 2 y}\] ?


If \[\frac{dy}{dx}\] when \[x = a \cos \theta \text{ and } y = b \sin \theta\] ?


If \[x = \sin^{- 1} \left( \frac{2 t}{1 + t^2} \right) \text{ and y } = \tan^{- 1} \left( \frac{2 t}{1 - t^2} \right), - 1 < t < 1\] porve that \[\frac{dy}{dx} = 1\] ?

 


If \[x = \left( t + \frac{1}{t} \right)^a , y = a^{t + \frac{1}{t}} , \text{ find } \frac{dy}{dx}\] ?


Differentiate \[\left( \cos x \right)^{\sin x }\] with respect to \[\left( \sin x \right)^{\cos x }\]?


Differentiate \[\tan^{- 1} \left( \frac{2x}{1 - x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text {  if }0 < x < 1\] ?


If \[f\left( 0 \right) = f\left( 1 \right) = 0, f'\left( 1 \right) = 2 \text { and y } = f \left( e^x \right) e^{f \left( x \right)}\] write the value of \[\frac{dy}{dx} \text{ at x } = 0\] ?


If \[y = \log \sqrt{\tan x}, \text{ write } \frac{dy}{dx} \] ?


If \[y = \sqrt{\sin x + y}, \text { then }\frac{dy}{dx} \text { equals }\] ______________ .


If y = x + tan x, show that  \[\cos^2 x\frac{d^2 y}{d x^2} - 2y + 2x = 0\] ?


If x = a (θ + sin θ), y = a (1 + cos θ), prove that \[\frac{d^2 y}{d x^2} = - \frac{a}{y^2}\] ?


\[\text { If x } = \cos t + \log \tan\frac{t}{2}, y = \sin t, \text { then find the value of } \frac{d^2 y}{d t^2} \text { and } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?


\[\text { If y } = a \left\{ x + \sqrt{x^2 + 1} \right\}^n + b \left\{ x - \sqrt{x^2 + 1} \right\}^{- n} , \text { prove that }\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 \]

Disclaimer: There is a misprint in the question,

\[\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0\] must be written instead of

\[\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 \] ?


If y = a + bx2, a, b arbitrary constants, then

 


If x = f(t) and y = g(t), then \[\frac{d^2 y}{d x^2}\] is equal to

 


If \[\frac{d}{dx}\left[ x^n - a_1 x^{n - 1} + a_2 x^{n - 2} + . . . + \left( - 1 \right)^n a_n \right] e^x = x^n e^x\] then the value of ar, 0 < r ≤ n, is equal to 

 


If xy = e(x – y), then show that `dy/dx = (y(x-1))/(x(y+1)) .`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×