English

Differentiate √ a 2 − X 2 a 2 + X 2 ? - Mathematics

Advertisements
Advertisements

Question

Differentiate \[\sqrt{\frac{a^2 - x^2}{a^2 + x^2}}\] ?

Sum

Solution

\[\text{ Let } y = \sqrt{\frac{a^2 - x^2}{a^2 + x^2}}\]

\[ \Rightarrow y = \left( \frac{a^2 - x^2}{a^2 + x^2} \right)^\frac{1}{2} \]

\[\text{Differentiate it with respect to x we get}, \]

\[\frac{d y}{d x} = \frac{d}{dx} \left( \frac{a^2 - x^2}{a^2 + x^2} \right)^\frac{1}{2} \]

\[ = \frac{1}{2} \left( \frac{a^2 - x^2}{a^2 + x^2} \right)^{\frac{1}{2} - 1} \times \frac{d}{dx}\left( \frac{a^2 - x^2}{a^2 + x^2} \right) \left[ \text{Using chain rule} \right]\]

\[ = \frac{1}{2} \left( \frac{a^2 - x^2}{a^2 + x^2} \right)^\frac{- 1}{2} \times \left\{ \frac{\left( a^2 + x^2 \right)\frac{d}{dx}\left( a^2 - x^2 \right) - \left( a^2 - x^2 \right)\frac{d}{dx}\left( a^2 + x^2 \right)}{\left( a^2 + x^2 \right)^2} \right\} \]

\[ = \frac{1}{2} \left( \frac{a^2 + x^2}{a^2 - x^2} \right)^\frac{1}{2} \left\{ \frac{- 2x\left( a^2 + x^2 \right) - 2x\left( a^2 - x^2 \right)}{\left( a^2 + x^2 \right)^2} \right\}\]

\[ = \frac{1}{2} \left( \frac{a^2 + x^2}{a^2 - x^2} \right)^\frac{1}{2} \left\{ \frac{- 2x a^2 - 2 x^3 - 2x a^2 + 2 x^3}{\left( a^2 + x^2 \right)^2} \right\}\]

\[ = \frac{1}{2} \left( \frac{a^2 + x^2}{a^2 - x^2} \right)^\frac{1}{2} \left\{ \frac{- 4x a^2}{\left( a^2 + x^2 \right)^2} \right\}\]

\[ = \frac{- 2x a^2}{\sqrt{a^2 - x^2} \left( a^2 + x^2 \right)^\frac{3}{2}}\]

\[So, \frac{d}{dx}\left( \sqrt{\frac{a^2 - x^2}{a^2 + x^2}} \right) = \frac{- 2 a^2 x}{\sqrt{a^2 - x^2} \left( a^2 + x^2 \right)^\frac{3}{2}}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Differentiation - Exercise 11.02 [Page 37]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 11 Differentiation
Exercise 11.02 | Q 14 | Page 37

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Differentiate the following functions from first principles ecos x.


Differentiate \[\log \left( \frac{x^2 + x + 1}{x^2 - x + 1} \right)\] ?


Differentiate \[e^{\sin^{- 1} 2x}\] ?


Differentiate \[\frac{2^x \cos x}{\left( x^2 + 3 \right)^2}\] ?


\[\log\left\{ \cot\left( \frac{\pi}{4} + \frac{x}{2} \right) \right\}\] ?


If \[y = \frac{x}{x + 2}\]  , prove tha \[x\frac{dy}{dx} = \left( 1 - y \right) y\] ? 


Differentiate \[\tan^{- 1} \left( \frac{a + bx}{b - ax} \right)\] ?


Differentiate \[\tan^{- 1} \left( \frac{5 x}{1 - 6 x^2} \right), - \frac{1}{\sqrt{6}} < x < \frac{1}{\sqrt{6}}\] ?


Differentiate \[\tan^{- 1} \left\{ \frac{x^{1/3} + a^{1/3}}{1 - \left( a x \right)^{1/3}} \right\}\] ?


Differentiate \[\left( 1 + \cos x \right)^x\] ?


Differentiate \[x^{\cos^{- 1} x}\] ?


Find  \[\frac{dy}{dx}\]  \[y = \frac{e^{ax} \cdot \sec x \cdot \log x}{\sqrt{1 - 2x}}\] ?

 


Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\log x} + \cos^2 \left( \frac{\pi}{4} \right)\] ?


Find \[\frac{dy}{dx}\] \[y = x^{\log x }+ \left( \log x \right)^x\] ?


If \[x^y + y^x = \left( x + y \right)^{x + y} , \text{ find } \frac{dy}{dx}\] ?


If \[\left( \cos x \right)^y = \left( \tan y \right)^x\] , prove that \[\frac{dy}{dx} = \frac{\log \tan y + y \tan x}{ \log \cos x - x \sec y \ cosec\ y }\] ?


If \[xy \log \left( x + y \right) = 1\] , prove that  \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?


If \[y = \left( \sin x - \cos x \right)^{\sin x - \cos x} , \frac{\pi}{4} < x < \frac{3\pi}{4}, \text{ find} \frac{dy}{dx}\] ?


\[\text{ If } x = e^{x/y} , \text{ prove that } \frac{dy}{dx} = \frac{x - y}{x\log x}\] ?

If \[x = \sin^{- 1} \left( \frac{2 t}{1 + t^2} \right) \text{ and y } = \tan^{- 1} \left( \frac{2 t}{1 - t^2} \right), - 1 < t < 1\] porve that \[\frac{dy}{dx} = 1\] ?

 


If \[x = \left( t + \frac{1}{t} \right)^a , y = a^{t + \frac{1}{t}} , \text{ find } \frac{dy}{dx}\] ?


Differentiate  \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\] \[x \in \left( - 1, 0 \right)\] ?


Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( \frac{1}{2 \sqrt{2}}, \frac{1}{2} \right)\] ?


Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { if } 0 < x < 1\] ?


Differentiate \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right)\] with respect to \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right), \text { if } - \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?


If \[y = \sin^{- 1} x + \cos^{- 1} x\] ,find \[\frac{dy}{dx}\] ?


If \[f\left( x \right) = \log \left\{ \frac{u \left( x \right)}{v \left( x \right)} \right\}, u \left( 1 \right) = v \left( 1 \right) \text{ and }u' \left( 1 \right) = v' \left( 1 \right) = 2\] , then find the value of `f' (1)` ?


If \[y = \log \left| 3x \right|, x \neq 0, \text{ find } \frac{dy}{dx} \] ? 


If f (x) is an odd function, then write whether `f' (x)` is even or odd ?


Let  \[\cup = \sin^{- 1} \left( \frac{2 x}{1 + x^2} \right) \text { and }V = \tan^{- 1} \left( \frac{2 x}{1 - x^2} \right), \text { then } \frac{d \cup}{dV} =\] ____________ .


If \[f\left( x \right) = \sqrt{x^2 - 10x + 25}\]  then the derivative of f (x) in the interval [0, 7] is ____________ .


If y = ex cos x, show that \[\frac{d^2 y}{d x^2} = 2 e^{- x} \sin x\] ?


If x = a sec θ, y = b tan θ, prove that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?


If x = 2 cos t − cos 2ty = 2 sin t − sin 2t, find \[\frac{d^2 y}{d x^2}\text{ at } t = \frac{\pi}{2}\] ?


If x = a cos nt − b sin nt, then \[\frac{d^2 x}{d t^2}\] is 

 


If y = a sin mx + b cos mx, then \[\frac{d^2 y}{d x^2}\]   is equal to

 


Differentiate \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right) w . r . t . \sin^{- 1} \frac{2x}{1 + x^2},\]tan-11+x2-1x w.r.t. sin-12x1+x2, if x ∈ (–1, 1) .


If x = sin t and y = sin pt, prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] .


If y = xx, prove that \[\frac{d^2 y}{d x^2} - \frac{1}{y} \left( \frac{dy}{dx} \right)^2 - \frac{y}{x} = 0 .\]


Range of 'a' for which x3 – 12x + [a] = 0 has exactly one real root is (–∞, p) ∪ [q, ∞), then ||p| – |q|| is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×