Advertisements
Advertisements
Question
Differentiate \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right) w . r . t . \sin^{- 1} \frac{2x}{1 + x^2},\]tan-11+x2-1x w.r.t. sin-12x1+x2, if x ∈ (–1, 1) .
Solution
\[\text { Let }u = \tan^{- 1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right)\]
\[\text { Put } x = \tan\theta\]
\[ \therefore u = \tan^{- 1} \left( \frac{\sqrt{1 + \tan^2 \theta} - 1}{\tan\theta} \right)\]
\[ \Rightarrow u = \tan^{- 1} \left( \frac{\sec\theta - 1}{\tan\theta} \right) \]
\[ \Rightarrow u = \tan^{- 1} \left( \frac{1 - \cos\theta}{\sin\theta} \right) \]
\[ \Rightarrow u = \tan^{- 1} \left( \frac{2 \sin^2 \frac{\theta}{2}}{2\sin\frac{\theta}{2}\cos\frac{\theta}{2}} \right) \]
\[ \Rightarrow u = \tan^{- 1} \left( \tan\frac{\theta}{2} \right)\]
\[\text { Here }, - 1 < x < 1\]
\[ \Rightarrow - 1 < \tan\theta < 1 \]
\[ \Rightarrow - \frac{\pi}{4} < \theta < \frac{\pi}{4} \]
\[ \therefore u = \frac{\theta}{2} \left[ \because \tan^{- 1} \left( \tan\theta \right) = \theta, if \theta \in \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \right] \]
\[ \Rightarrow u = \frac{1}{2} \tan^{- 1} x \left[ \because x = \tan\theta \right]\]
Differentiating both sides with respect to x, we get
\[\frac{du}{dx} = \frac{1}{2\left( 1 + x^2 \right)}\]
\[v = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\]
\[\Rightarrow v = 2 \tan^{- 1} x\]
Differentiating both sides with respect to x, we get
\[\frac{dv}{dx} = \frac{2}{1 + x^2}\]
\[\therefore \frac{du}{dv} = \frac{\frac{du}{dx}}{\frac{dv}{dx}} = \frac{\frac{1}{2\left( 1 + x^2 \right)}}{\frac{2}{1 + x^2}}\]
\[ \Rightarrow \frac{du}{dv} = \frac{1}{4}\]
APPEARS IN
RELATED QUESTIONS
Differentiate \[\sqrt{\frac{1 + \sin x}{1 - \sin x}}\] ?
Differentiate \[\sqrt{\tan^{- 1} \left( \frac{x}{2} \right)}\] ?
Differentiate \[\log \sqrt{\frac{x - 1}{x + 1}}\] ?
If \[y = \left( x - 1 \right) \log \left( x - 1 \right) - \left( x + 1 \right) \log \left( x + 1 \right)\] , prove that \[\frac{dy}{dc} = \log \left( \frac{x - 1}{1 + x} \right)\] ?
If \[y = e^x \cos x\] ,prove that \[\frac{dy}{dx} = \sqrt{2} e^x \cdot \cos \left( x + \frac{\pi}{4} \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{4x}{1 - 4 x^2} \right), - \frac{1}{2} < x < \frac{1}{2}\] ?
Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] with respect to x.
If \[y = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), 0 < x < 1,\] prove that \[\frac{dy}{dx} = \frac{4}{1 + x^2}\] ?
Find \[\frac{dy}{dx}\] in the following case \[x^5 + y^5 = 5 xy\] ?
Differentiate \[e^{x \log x}\] ?
Find \[\frac{dy}{dx}\] \[y = \sin x \sin 2x \sin 3x \sin 4x\] ?
If \[x^{13} y^7 = \left( x + y \right)^{20}\] prove that \[\frac{dy}{dx} = \frac{y}{x}\] ?
If \[\left( \cos x \right)^y = \left( \cos y \right)^x , \text{ find } \frac{dy}{dx}\] ?
If \[x = \left( t + \frac{1}{t} \right)^a , y = a^{t + \frac{1}{t}} , \text{ find } \frac{dy}{dx}\] ?
If \[x = a\sin2t\left( 1 + \cos2t \right) \text { and y } = b\cos2t\left( 1 - \cos2t \right)\] , show that at \[t = \frac{\pi}{4}, \frac{dy}{dx} = \frac{b}{a}\] ?
If \[x = \frac{1 + \log t}{t^2}, y = \frac{3 + 2\log t}{t}, \text { find } \frac{dy}{dx}\] ?
Differentiate \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\]\[x \in \left( 0, 1 \right)\] ?
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( 0, \frac{1}{\sqrt{2}} \right)\] ?
Differentiate \[\left( \cos x \right)^{\sin x }\] with respect to \[\left( \sin x \right)^{\cos x }\]?
If \[f\left( x \right) = \left( \frac{x^l}{x^m} \right)^{l + m} \left( \frac{x^m}{x^n} \right)^{m + n} \left( \frac{x^n}{x^l} \right)^{n + 1}\] the f' (x) is equal to _____________ .
If \[\sin y = x \cos \left( a + y \right), \text { then } \frac{dy}{dx}\] is equal to ______________ .
If y = sin (log x), prove that \[x^2 \frac{d^2 y}{d x^2} + x\frac{dy}{dx} + y = 0\] ?
Let f(x) be a polynomial. Then, the second order derivative of f(ex) is
If \[y = \log_e \left( \frac{x}{a + bx} \right)^x\] then x3 y2 =
If x = f(t) cos t − f' (t) sin t and y = f(t) sin t + f'(t) cos t, then\[\left( \frac{dx}{dt} \right)^2 + \left( \frac{dy}{dt} \right)^2 =\]
If \[\frac{d}{dx}\left[ x^n - a_1 x^{n - 1} + a_2 x^{n - 2} + . . . + \left( - 1 \right)^n a_n \right] e^x = x^n e^x\] then the value of ar, 0 < r ≤ n, is equal to
If logy = tan–1 x, then show that `(1+x^2) (d^2y)/(dx^2) + (2x - 1) dy/dx = 0 .`