Advertisements
Advertisements
प्रश्न
Differentiate \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right) w . r . t . \sin^{- 1} \frac{2x}{1 + x^2},\]tan-11+x2-1x w.r.t. sin-12x1+x2, if x ∈ (–1, 1) .
उत्तर
\[\text { Let }u = \tan^{- 1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right)\]
\[\text { Put } x = \tan\theta\]
\[ \therefore u = \tan^{- 1} \left( \frac{\sqrt{1 + \tan^2 \theta} - 1}{\tan\theta} \right)\]
\[ \Rightarrow u = \tan^{- 1} \left( \frac{\sec\theta - 1}{\tan\theta} \right) \]
\[ \Rightarrow u = \tan^{- 1} \left( \frac{1 - \cos\theta}{\sin\theta} \right) \]
\[ \Rightarrow u = \tan^{- 1} \left( \frac{2 \sin^2 \frac{\theta}{2}}{2\sin\frac{\theta}{2}\cos\frac{\theta}{2}} \right) \]
\[ \Rightarrow u = \tan^{- 1} \left( \tan\frac{\theta}{2} \right)\]
\[\text { Here }, - 1 < x < 1\]
\[ \Rightarrow - 1 < \tan\theta < 1 \]
\[ \Rightarrow - \frac{\pi}{4} < \theta < \frac{\pi}{4} \]
\[ \therefore u = \frac{\theta}{2} \left[ \because \tan^{- 1} \left( \tan\theta \right) = \theta, if \theta \in \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \right] \]
\[ \Rightarrow u = \frac{1}{2} \tan^{- 1} x \left[ \because x = \tan\theta \right]\]
Differentiating both sides with respect to x, we get
\[\frac{du}{dx} = \frac{1}{2\left( 1 + x^2 \right)}\]
\[v = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\]
\[\Rightarrow v = 2 \tan^{- 1} x\]
Differentiating both sides with respect to x, we get
\[\frac{dv}{dx} = \frac{2}{1 + x^2}\]
\[\therefore \frac{du}{dv} = \frac{\frac{du}{dx}}{\frac{dv}{dx}} = \frac{\frac{1}{2\left( 1 + x^2 \right)}}{\frac{2}{1 + x^2}}\]
\[ \Rightarrow \frac{du}{dv} = \frac{1}{4}\]
APPEARS IN
संबंधित प्रश्न
Differentiate the following functions from first principles e3x.
Differentiate \[\frac{e^x \log x}{x^2}\] ?
Differentiate \[\sqrt{\tan^{- 1} \left( \frac{x}{2} \right)}\] ?
Differentiate \[\frac{3 x^2 \sin x}{\sqrt{7 - x^2}}\] ?
Differentiate \[\sin^2 \left\{ \log \left( 2x + 3 \right) \right\}\] ?
Differentiate \[\log \sqrt{\frac{x - 1}{x + 1}}\] ?
If \[y = \left( x - 1 \right) \log \left( x - 1 \right) - \left( x + 1 \right) \log \left( x + 1 \right)\] , prove that \[\frac{dy}{dc} = \log \left( \frac{x - 1}{1 + x} \right)\] ?
Differentiate \[\cos^{- 1} \left\{ \sqrt{\frac{1 + x}{2}} \right\}, - 1 < x < 1\] ?
If \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, - \frac{1}{2} < x < 0, \text{ find } \frac{dy}{dx} \] ?
If \[\sqrt{1 - x^2} + \sqrt{1 - y^2} = a \left( x - y \right)\] , prove that \[\frac{dy}{dx} = \frac{\sqrt{1 - y^2}}{1 - x^2}\] ?
If \[x y^2 = 1,\] prove that \[2\frac{dy}{dx} + y^3 = 0\] ?
If \[xy = e^{x - y} , \text{ find } \frac{dy}{dx}\] ?
Differentiate \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\] \[x \in \left( - 1, 0 \right)\] ?
Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { if } 0 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{x - 1}{x + 1} \right)\] with respect to \[\sin^{- 1} \left( 3x - 4 x^3 \right), \text { if }- \frac{1}{2} < x < \frac{1}{2}\] ?
If f (x) = logx2 (log x), the `f' (x)` at x = e is ____________ .
If \[x = a \cos^3 \theta, y = a \sin^3 \theta, \text { then } \sqrt{1 + \left( \frac{dy}{dx} \right)^2} =\] ____________ .
For the curve \[\sqrt{x} + \sqrt{y} = 1, \frac{dy}{dx}\text { at } \left( 1/4, 1/4 \right)\text { is }\] _____________ .
If \[y = e^{\tan^{- 1} x}\] prove that (1 + x2)y2 + (2x − 1)y1 = 0 ?
If x = a cos nt − b sin nt and \[\frac{d^2 x}{dt} = \lambda x\] then find the value of λ ?
If y = |x − x2|, then find \[\frac{d^2 y}{d x^2}\] ?
If x = a cos nt − b sin nt, then \[\frac{d^2 x}{d t^2}\] is
If \[y = \tan^{- 1} \left\{ \frac{\log_e \left( e/ x^2 \right)}{\log_e \left( e x^2 \right)} \right\} + \tan^{- 1} \left( \frac{3 + 2 \log_e x}{1 - 6 \log_e x} \right)\], then \[\frac{d^2 y}{d x^2} =\]
If y = sin (m sin−1 x), then (1 − x2) y2 − xy1 is equal to
If \[\frac{d}{dx}\left[ x^n - a_1 x^{n - 1} + a_2 x^{n - 2} + . . . + \left( - 1 \right)^n a_n \right] e^x = x^n e^x\] then the value of ar, 0 < r ≤ n, is equal to
Find the minimum value of (ax + by), where xy = c2.
The number of road accidents in the city due to rash driving, over a period of 3 years, is given in the following table:
Year | Jan-March | April-June | July-Sept. | Oct.-Dec. |
2010 | 70 | 60 | 45 | 72 |
2011 | 79 | 56 | 46 | 84 |
2012 | 90 | 64 | 45 | 82 |
Calculate four quarterly moving averages and illustrate them and original figures on one graph using the same axes for both.