हिंदी

If Y = Cos − 1 ( 2 X ) + 2 Cos − 1 √ 1 − 4 X 2 , − 1 2 < X < 0 , Find D Y D X ? - Mathematics

Advertisements
Advertisements

प्रश्न

If \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, - \frac{1}{2} < x < 0, \text{ find } \frac{dy}{dx} \] ?

योग

उत्तर

\[\text{ Here }, y =  \cos^{- 1} \left( 2x \right) + 2   \cos^{- 1} \sqrt{1 - 4 x^2}\]
\[\text{ Put }2x = \cos\theta\]
\[ \therefore y =  \cos^{- 1} \left( \cos  \theta \right) + 2   \cos^{- 1} \sqrt{1 - \cos^2 \theta}\]
\[ \Rightarrow y =  \cos^{- 1} \left( \cos  \theta \right) + 2   \cos^{- 1} \left( \sin\theta \right)\]
\[ \Rightarrow y =  \cos^{- 1} \left( \cos  \theta \right) + 2   \cos^{- 1} \left[ \cos\left( \frac{\pi}{2} - \theta \right) \right] ........\left( 1 \right)\]
\[\text{Now, }-\frac{1}{2} < x < 0\]
\[ \Rightarrow - 1 < 2x < 0\]
\[ \Rightarrow - 1 < \cos\theta < 0\]
\[ \Rightarrow \frac{\pi}{2} < \theta < \pi\]
And
\[ \Rightarrow - \frac{\pi}{2} >  - \theta >  - \pi\]
\[ \Rightarrow \left( \frac{\pi}{2} - \frac{\pi}{2} \right) > \left( \frac{\pi}{2} - \theta \right) > \left( \frac{\pi}{2} - \pi \right)\]
\[ \Rightarrow 0 > \left( \frac{\pi}{2} - \theta \right) >  - \frac{\pi}{2}\] 
\[ \Rightarrow - \frac{\pi}{2} < \left( \frac{\pi}{2} - \theta \right) < 0\] 
\[\text{ So,   from  equation }  \left( 1 \right), \] 
\[y = \theta + 2\left[ - \left( \frac{\pi}{2} - \theta \right) \right]...........[\text{ Since }, \cos^{- 1} \cos\left( \theta \right) = \theta,\text{ if } \theta \in \left[ 0, \pi \right],  \cos^{- 1} \cos\left( \theta \right) = - \theta, \text{ if } \theta \in \left[ - \pi, 0 \right]]\] 
\[y = \theta - 2 \times \frac{\pi}{2} + 2\theta\] 
\[y =  - \pi + 3\theta\] 
\[y =  - \pi + 3 \cos^{- 1} \left( 2x \right)..........\left[ \text{ Since }, 2x = cos\theta \right]\]
Differentiate it with respect to x using chain rule,
\[\frac{d y}{d x} = 0 + 3\left( \frac{- 1}{\sqrt{1 - \left( 2x \right)^2}} \right)\frac{d}{dx}\left( 2x \right)\]
\[ \Rightarrow \frac{d y}{d x} = \frac{- 3}{\sqrt{1 - 4 x^2}} \times 2\]
\[ \therefore \frac{d y}{d x} = - \frac{6}{\sqrt{1 - 4 x^2}}\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Differentiation - Exercise 11.03 [पृष्ठ ६४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 11 Differentiation
Exercise 11.03 | Q 44 | पृष्ठ ६४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Prove that `y=(4sintheta)/(2+costheta)-theta `


If the sum of the lengths of the hypotenuse and a side of a right triangle is given, show that the area of the triangle is maximum, when the angle between them is 60º.


Differentiate tan (x° + 45°) ?


Differentiate tan 5x° ?


Differentiate logx 3 ?


Differentiate \[\frac{e^x \sin x}{\left( x^2 + 2 \right)^3}\] ?


Differentiate \[3 e^{- 3x} \log \left( 1 + x \right)\] ?


Differentiate \[\cos^{- 1} \left( \frac{1 - x^{2n}}{1 + x^{2n}} \right), < x < \infty\] ?


Differentiate \[\tan^{- 1} \left\{ \frac{x^{1/3} + a^{1/3}}{1 - \left( a x \right)^{1/3}} \right\}\] ?


If  \[y = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), 0 < x < 1,\] prove that  \[\frac{dy}{dx} = \frac{4}{1 + x^2}\] ?

 


Find  \[\frac{dy}{dx}\] in the following case \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] ?


If \[\sqrt{1 - x^2} + \sqrt{1 - y^2} = a \left( x - y \right)\] , prove that \[\frac{dy}{dx} = \frac{\sqrt{1 - y^2}}{1 - x^2}\] ?


If \[x y^2 = 1,\] prove that \[2\frac{dy}{dx} + y^3 = 0\] ?


If \[xy \log \left( x + y \right) = 1\] ,Prove that \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?


Differentiate \[\left( 1 + \cos x \right)^x\] ?


Differentiate \[e^{x \log x}\] ?


If \[y = x \sin y\] , prove that  \[\frac{dy}{dx} = \frac{y}{x \left( 1 - x \cos y \right)}\] ?

 


If \[x = 10 \left( t - \sin t \right), y = 12 \left( 1 - \cos t \right), \text { find } \frac{dy}{dx} .\] ?

 


Differentiate  \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\] \[x \in \left( - 1, 0 \right)\] ?


Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { if } 0 < x < 1\] ?


Differentiate \[\tan^{- 1} \left( \frac{2x}{1 - x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text {  if }0 < x < 1\] ?


Differentiate \[\sin^{- 1} \left( 2 ax \sqrt{1 - a^2 x^2} \right)\] with respect to \[\sqrt{1 - a^2 x^2}, \text{ if }-\frac{1}{\sqrt{2}} < ax < \frac{1}{\sqrt{2}}\] ?


Differentiate \[\tan^{- 1} \left( \frac{1 - x}{1 + x} \right)\] with respect to \[\sqrt{1 - x^2},\text {if} - 1 < x < 1\] ?


If \[x = a \left( \theta + \sin \theta \right), y = a \left( 1 + \cos \theta \right), \text{ find} \frac{dy}{dx}\] ?


The differential coefficient of f (log x) w.r.t. x, where f (x) = log x is ___________ .


The derivative of the function \[\cot^{- 1} \left| \left( \cos 2 x \right)^{1/2} \right| \text{ at } x = \pi/6 \text{ is }\] ______ .


If \[f\left( x \right) = \sqrt{x^2 - 10x + 25}\]  then the derivative of f (x) in the interval [0, 7] is ____________ .


If \[y = \tan^{- 1} \left( \frac{\sin x + \cos x}{\cos x - \sin x} \right), \text { then  } \frac{dy}{dx}\] is equal to ___________ .


Find the second order derivatives of the following function  x3 + tan x ?


Find the second order derivatives of the following function ex sin 5x  ?


If x = a sec θ, y = b tan θ, prove that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?


If x = a cos θ, y = b sin θ, show that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?


If y = ae2x + be−x, show that, \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\] ?


If y = 500 e7x + 600 e−7x, show that \[\frac{d^2 y}{d x^2} = 49y\] ?


If x = 2 at, y = at2, where a is a constant, then \[\frac{d^2 y}{d x^2} \text { at x } = \frac{1}{2}\] is 

 


If y = etan x, then (cos2 x)y2 =


If x = a (1 + cos θ), y = a(θ + sin θ), prove that \[\frac{d^2 y}{d x^2} = \frac{- 1}{a}at \theta = \frac{\pi}{2}\]


Find the height of a cylinder, which is open at the top, having a given surface area, greatest volume, and radius r.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×