मराठी

If Y = Cos − 1 ( 2 X ) + 2 Cos − 1 √ 1 − 4 X 2 , − 1 2 < X < 0 , Find D Y D X ? - Mathematics

Advertisements
Advertisements

प्रश्न

If \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, - \frac{1}{2} < x < 0, \text{ find } \frac{dy}{dx} \] ?

बेरीज

उत्तर

\[\text{ Here }, y =  \cos^{- 1} \left( 2x \right) + 2   \cos^{- 1} \sqrt{1 - 4 x^2}\]
\[\text{ Put }2x = \cos\theta\]
\[ \therefore y =  \cos^{- 1} \left( \cos  \theta \right) + 2   \cos^{- 1} \sqrt{1 - \cos^2 \theta}\]
\[ \Rightarrow y =  \cos^{- 1} \left( \cos  \theta \right) + 2   \cos^{- 1} \left( \sin\theta \right)\]
\[ \Rightarrow y =  \cos^{- 1} \left( \cos  \theta \right) + 2   \cos^{- 1} \left[ \cos\left( \frac{\pi}{2} - \theta \right) \right] ........\left( 1 \right)\]
\[\text{Now, }-\frac{1}{2} < x < 0\]
\[ \Rightarrow - 1 < 2x < 0\]
\[ \Rightarrow - 1 < \cos\theta < 0\]
\[ \Rightarrow \frac{\pi}{2} < \theta < \pi\]
And
\[ \Rightarrow - \frac{\pi}{2} >  - \theta >  - \pi\]
\[ \Rightarrow \left( \frac{\pi}{2} - \frac{\pi}{2} \right) > \left( \frac{\pi}{2} - \theta \right) > \left( \frac{\pi}{2} - \pi \right)\]
\[ \Rightarrow 0 > \left( \frac{\pi}{2} - \theta \right) >  - \frac{\pi}{2}\] 
\[ \Rightarrow - \frac{\pi}{2} < \left( \frac{\pi}{2} - \theta \right) < 0\] 
\[\text{ So,   from  equation }  \left( 1 \right), \] 
\[y = \theta + 2\left[ - \left( \frac{\pi}{2} - \theta \right) \right]...........[\text{ Since }, \cos^{- 1} \cos\left( \theta \right) = \theta,\text{ if } \theta \in \left[ 0, \pi \right],  \cos^{- 1} \cos\left( \theta \right) = - \theta, \text{ if } \theta \in \left[ - \pi, 0 \right]]\] 
\[y = \theta - 2 \times \frac{\pi}{2} + 2\theta\] 
\[y =  - \pi + 3\theta\] 
\[y =  - \pi + 3 \cos^{- 1} \left( 2x \right)..........\left[ \text{ Since }, 2x = cos\theta \right]\]
Differentiate it with respect to x using chain rule,
\[\frac{d y}{d x} = 0 + 3\left( \frac{- 1}{\sqrt{1 - \left( 2x \right)^2}} \right)\frac{d}{dx}\left( 2x \right)\]
\[ \Rightarrow \frac{d y}{d x} = \frac{- 3}{\sqrt{1 - 4 x^2}} \times 2\]
\[ \therefore \frac{d y}{d x} = - \frac{6}{\sqrt{1 - 4 x^2}}\]
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Differentiation - Exercise 11.03 [पृष्ठ ६४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 11 Differentiation
Exercise 11.03 | Q 44 | पृष्ठ ६४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is `cos^(-1)(1/sqrt3)`


Differentiate the following functions from first principles x2ex ?


Differentiate \[3^{x^2 + 2x}\] ?


Differentiate \[\sqrt{\frac{1 - x^2}{1 + x^2}}\] ?


Differentiate (log sin x)?


Differentiate \[\tan \left( e^{\sin x }\right)\] ?


Differentiate \[e^{\tan^{- 1}} \sqrt{x}\] ?


Differentiate \[\log \left( \tan^{- 1} x \right)\]? 


Differentiate \[\left( \sin^{- 1} x^4 \right)^4\] ?


\[\log\left\{ \cot\left( \frac{\pi}{4} + \frac{x}{2} \right) \right\}\] ?


If \[y = \frac{x}{x + 2}\]  , prove tha \[x\frac{dy}{dx} = \left( 1 - y \right) y\] ? 


Differentiate \[\sin^{- 1} \left( 2 x^2 - 1 \right), 0 < x < 1\]  ?


If  \[y = \cot^{- 1} \left\{ \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} \right\}\],  show that \[\frac{dy}{dx}\] is independent of x. ? 

 


If the derivative of tan−1 (a + bx) takes the value 1 at x = 0, prove that 1 + a2 = b ?


If \[y = \left\{ \log_{\cos x} \sin x \right\} \left\{ \log_{\sin x} \cos x \right\}^{- 1} + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right), \text{ find } \frac{dy}{dx} \text{ at }x = \frac{\pi}{4}\] ?


Find  \[\frac{dy}{dx}\] \[y = e^{3x} \sin 4x \cdot 2^x\] ?

 


If \[x^y + y^x = \left( x + y \right)^{x + y} , \text{ find } \frac{dy}{dx}\] ?


If \[xy \log \left( x + y \right) = 1\] , prove that  \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?


Differentiate  \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\]\[x \in \left( 0, 1 \right)\]  ?

 


Differentiate \[\cos^{- 1} \left( 4 x^3 - 3x \right)\] with respect to \[\tan^{- 1} \left( \frac{\sqrt{1 - x^2}}{x} \right), \text{ if }\frac{1}{2} < x < 1\] ? 


If \[y = x \left| x \right|\] , find \[\frac{dy}{dx} \text{ for } x < 0\] ?


If \[y = \left( 1 + \frac{1}{x} \right)^x , \text{ then} \frac{dy}{dx} =\] ____________ .


Given  \[f\left( x \right) = 4 x^8 , \text { then }\] _________________ .


Let  \[\cup = \sin^{- 1} \left( \frac{2 x}{1 + x^2} \right) \text { and }V = \tan^{- 1} \left( \frac{2 x}{1 - x^2} \right), \text { then } \frac{d \cup}{dV} =\] ____________ .


If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \cdot \frac{dy}{dx} + y \cos^2 x = 0\] ?


If \[y = e^{2x} \left( ax + b \right)\]  show that  \[y_2 - 4 y_1 + 4y = 0\] ?


If y = (tan−1 x)2, then prove that (1 + x2)2 y2 + 2x(1 + x2)y1 = 2 ?


If y = ae2x + be−x, show that, \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\] ?


If  \[y = e^{a \cos^{- 1}} x\] ,prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - a^2 y = 0\] ?


If y = 500 e7x + 600 e−7x, show that \[\frac{d^2 y}{d x^2} = 49y\] ?


If y log (1 + cos x), prove that \[\frac{d^3 y}{d x^3} + \frac{d^2 y}{d x^2} \cdot \frac{dy}{dx} = 0\] ?


If y = 3 e2x + 2 e3x, prove that  \[\frac{d^2 y}{d x^2} - 5\frac{dy}{dx} + 6y = 0\] ?


\[\text { If y } = a \left\{ x + \sqrt{x^2 + 1} \right\}^n + b \left\{ x - \sqrt{x^2 + 1} \right\}^{- n} , \text { prove that }\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 \]

Disclaimer: There is a misprint in the question,

\[\left( x^2 + 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0\] must be written instead of

\[\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + x\frac{d y}{d x} - n^2 y = 0 \] ?


If x = f(t) and y = g(t), then write the value of \[\frac{d^2 y}{d x^2}\] ?


\[\frac{d^{20}}{d x^{20}} \left( 2 \cos x \cos 3 x \right) =\]

 


If y = a sin mx + b cos mx, then \[\frac{d^2 y}{d x^2}\]   is equal to

 


If y = (sin−1 x)2, then (1 − x2)y2 is equal to

 


If y2 = ax2 + bx + c, then \[y^3 \frac{d^2 y}{d x^2}\] is 

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×