English

If Y = Cos − 1 ( 2 X ) + 2 Cos − 1 √ 1 − 4 X 2 , − 1 2 < X < 0 , Find D Y D X ? - Mathematics

Advertisements
Advertisements

Question

If \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, - \frac{1}{2} < x < 0, \text{ find } \frac{dy}{dx} \] ?

Sum

Solution

\[\text{ Here }, y =  \cos^{- 1} \left( 2x \right) + 2   \cos^{- 1} \sqrt{1 - 4 x^2}\]
\[\text{ Put }2x = \cos\theta\]
\[ \therefore y =  \cos^{- 1} \left( \cos  \theta \right) + 2   \cos^{- 1} \sqrt{1 - \cos^2 \theta}\]
\[ \Rightarrow y =  \cos^{- 1} \left( \cos  \theta \right) + 2   \cos^{- 1} \left( \sin\theta \right)\]
\[ \Rightarrow y =  \cos^{- 1} \left( \cos  \theta \right) + 2   \cos^{- 1} \left[ \cos\left( \frac{\pi}{2} - \theta \right) \right] ........\left( 1 \right)\]
\[\text{Now, }-\frac{1}{2} < x < 0\]
\[ \Rightarrow - 1 < 2x < 0\]
\[ \Rightarrow - 1 < \cos\theta < 0\]
\[ \Rightarrow \frac{\pi}{2} < \theta < \pi\]
And
\[ \Rightarrow - \frac{\pi}{2} >  - \theta >  - \pi\]
\[ \Rightarrow \left( \frac{\pi}{2} - \frac{\pi}{2} \right) > \left( \frac{\pi}{2} - \theta \right) > \left( \frac{\pi}{2} - \pi \right)\]
\[ \Rightarrow 0 > \left( \frac{\pi}{2} - \theta \right) >  - \frac{\pi}{2}\] 
\[ \Rightarrow - \frac{\pi}{2} < \left( \frac{\pi}{2} - \theta \right) < 0\] 
\[\text{ So,   from  equation }  \left( 1 \right), \] 
\[y = \theta + 2\left[ - \left( \frac{\pi}{2} - \theta \right) \right]...........[\text{ Since }, \cos^{- 1} \cos\left( \theta \right) = \theta,\text{ if } \theta \in \left[ 0, \pi \right],  \cos^{- 1} \cos\left( \theta \right) = - \theta, \text{ if } \theta \in \left[ - \pi, 0 \right]]\] 
\[y = \theta - 2 \times \frac{\pi}{2} + 2\theta\] 
\[y =  - \pi + 3\theta\] 
\[y =  - \pi + 3 \cos^{- 1} \left( 2x \right)..........\left[ \text{ Since }, 2x = cos\theta \right]\]
Differentiate it with respect to x using chain rule,
\[\frac{d y}{d x} = 0 + 3\left( \frac{- 1}{\sqrt{1 - \left( 2x \right)^2}} \right)\frac{d}{dx}\left( 2x \right)\]
\[ \Rightarrow \frac{d y}{d x} = \frac{- 3}{\sqrt{1 - 4 x^2}} \times 2\]
\[ \therefore \frac{d y}{d x} = - \frac{6}{\sqrt{1 - 4 x^2}}\]
shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Differentiation - Exercise 11.03 [Page 64]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 11 Differentiation
Exercise 11.03 | Q 44 | Page 64

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is `cos^(-1)(1/sqrt3)`


If the function f(x)=2x39mx2+12m2x+1, where m>0 attains its maximum and minimum at p and q respectively such that p2=q, then find the value of m.

 


​Differentiate the following function from first principles \[e^\sqrt{\cot x}\] .


Differentiate the following functions from first principles log cosec x ?


Differentiate \[e^{\tan 3 x} \] ?


Differentiate \[\log \left( cosec x - \cot x \right)\] ?


Differentiate \[e^{\tan^{- 1}} \sqrt{x}\] ?


Differentiate \[\log \left( \tan^{- 1} x \right)\]? 


Differentiate \[\frac{2^x \cos x}{\left( x^2 + 3 \right)^2}\] ?


Differentiate \[\frac{x^2 + 2}{\sqrt{\cos x}}\] ?


If \[y = \frac{e^x - e^{- x}}{e^x + e^{- x}}\] .prove that \[\frac{dy}{dx} = 1 - y^2\] ?


Differentiate \[\sin^{- 1} \left\{ \frac{x}{\sqrt{x^2 + a^2}} \right\}\] ?


Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] ?


If the derivative of tan−1 (a + bx) takes the value 1 at x = 0, prove that 1 + a2 = b ?


Differentiate \[\sin^{- 1} \left\{ \frac{2^{x + 1} \cdot 3^x}{1 + \left( 36 \right)^x} \right\}\]  with respect to x ?


Find  \[\frac{dy}{dx}\] in the following case \[e^{x - y} = \log \left( \frac{x}{y} \right)\] ?

 


Differentiate \[x^{\sin^{- 1} x}\]  ?


Find \[\frac{dy}{dx}\]

\[y = x^x + x^{1/x}\] ?


If \[x^x + y^x = 1\], prove that \[\frac{dy}{dx} = - \left\{ \frac{x^x \left( 1 + \log x \right) + y^x \cdot \log y}{x \cdot y^\left( x - 1 \right)} \right\}\] ?


If \[x^y + y^x = \left( x + y \right)^{x + y} , \text{ find } \frac{dy}{dx}\] ?


If  \[y = \sqrt{\tan x + \sqrt{\tan x + \sqrt{\tan x + . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sec^2 x}{2 y - 1}\] ?

 


If \[\frac{dy}{dx}\] when \[x = a \cos \theta \text{ and } y = b \sin \theta\] ?


Find \[\frac{dy}{dx}\],when \[x = a e^\theta \left( \sin \theta - \cos \theta \right), y = a e^\theta \left( \sin \theta + \cos \theta \right)\] ?


If  \[x = a\sin2t\left( 1 + \cos2t \right) \text { and y } = b\cos2t\left( 1 - \cos2t \right)\] , show that at  \[t = \frac{\pi}{4}, \frac{dy}{dx} = \frac{b}{a}\] ?


Differentiate x2 with respect to x3


The differential coefficient of f (log x) w.r.t. x, where f (x) = log x is ___________ .


If \[f\left( x \right) = \tan^{- 1} \sqrt{\frac{1 + \sin x}{1 - \sin x}}, 0 \leq x \leq \pi/2, \text{ then } f' \left( \pi/6 \right) \text{ is }\] _________ .


Let  \[\cup = \sin^{- 1} \left( \frac{2 x}{1 + x^2} \right) \text { and }V = \tan^{- 1} \left( \frac{2 x}{1 - x^2} \right), \text { then } \frac{d \cup}{dV} =\] ____________ .


If \[f\left( x \right) = \sqrt{x^2 + 6x + 9}, \text { then } f'\left( x \right)\] is equal to ______________ .


If \[f\left( x \right) = \sqrt{x^2 - 10x + 25}\]  then the derivative of f (x) in the interval [0, 7] is ____________ .


If \[y = \log \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] __________ .


Find the second order derivatives of the following function  log (log x)  ?


If \[y = \frac{\log x}{x}\] show that \[\frac{d^2 y}{d x^2} = \frac{2 \log x - 3}{x^3}\] ?


If x = a sec θ, y = b tan θ, prove that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?


If x = 2 cos t − cos 2ty = 2 sin t − sin 2t, find \[\frac{d^2 y}{d x^2}\text{ at } t = \frac{\pi}{2}\] ?


If y2 = ax2 + bx + c, then \[y^3 \frac{d^2 y}{d x^2}\] is 

 


Differentiate `log [x+2+sqrt(x^2+4x+1)]`


f(x) = xx has a stationary point at ______.


Find the height of a cylinder, which is open at the top, having a given surface area, greatest volume, and radius r.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×