Advertisements
Advertisements
Question
If \[x^x + y^x = 1\], prove that \[\frac{dy}{dx} = - \left\{ \frac{x^x \left( 1 + \log x \right) + y^x \cdot \log y}{x \cdot y^\left( x - 1 \right)} \right\}\] ?
Solution
\[\text{ We have}, x^x + y^x = 1\]
\[ \Rightarrow e^{\log x^x} + e^{\log y^x} = 1\]
\[ \Rightarrow e^{x \log x} + e^{x \log y} = 1 \]
Differentiating with respect to x using chain rule,
\[\frac{d}{dx}\left( e^{x\log x} \right) + \frac{d}{dx}\left( e^{x \log y} \right) = \frac{d}{dx}\left( 1 \right)\]
\[ \Rightarrow e^{x \log x} \frac{d}{dx}\left( x \log x \right) + e^{x \log y} \frac{d}{dx}\left( x \log y \right) = 0\]
\[ \Rightarrow e^{x \log x} \left[ x\frac{d}{dx}\left( \log x \right) + \log x\frac{d}{dx}\left( x \right) \right] + e^{\log y^x} \left[ x\frac{d}{dx}\left( \log y \right) + \log y\frac{d}{dx}\left( x \right) \right] = 0\]
\[ \Rightarrow x^x \left[ x\left( \frac{1}{x} \right) + \log x\left( 1 \right) \right] + y^x \left[ x\left( \frac{1}{y} \right)\frac{dy}{dx} + \log y\left( 1 \right) \right] = 0\]
\[ \Rightarrow x^x \left[ 1 + \log x \right] + y^x \left( \frac{x}{y}\frac{dy}{dx} + \log y \right) = 0\]
\[ \Rightarrow y^x \times \frac{x}{y}\frac{dy}{dx} = - \left[ x^x \left( 1 + \log x \right) + y^x \log y \right]\]
\[ \Rightarrow \left( x y^{x - 1} \right)\frac{dy}{dx} = - \left[ x^x \left( 1 + \log x \right) + y^x \log y \right]\]
\[ \Rightarrow \frac{dy}{dx} = - \left[ \frac{x^x \left( 1 + \log x \right) + y^x \log y}{x y^{x - 1}} \right]\]
APPEARS IN
RELATED QUESTIONS
Prove that `y=(4sintheta)/(2+costheta)-theta `
Differentiate the following functions from first principles x2ex ?
Differentiate \[\sqrt{\frac{1 + x}{1 - x}}\] ?
Differentiate \[e^{\tan 3 x} \] ?
Differentiate \[e^\sqrt{\cot x}\] ?
Differentiate \[\frac{e^x \log x}{x^2}\] ?
Differentiate \[\sin^{- 1} \left\{ \sqrt{1 - x^2} \right\}, 0 < x < 1\] ?
Differentiate \[\sin^{- 1} \left( 1 - 2 x^2 \right), 0 < x < 1\] ?
Differentiate \[\sin^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?
Differentiate \[\cos^{- 1} \left( \frac{1 - x^{2n}}{1 + x^{2n}} \right), < x < \infty\] ?
Differentiate \[\tan^{- 1} \left( \frac{5 x}{1 - 6 x^2} \right), - \frac{1}{\sqrt{6}} < x < \frac{1}{\sqrt{6}}\] ?
Differentiate
\[\tan^{- 1} \left( \frac{\cos x + \sin x}{\cos x - \sin x} \right), \frac{\pi}{4} < x < \frac{\pi}{4}\] ?
Find \[\frac{dy}{dx}\] in the following case \[x^{2/3} + y^{2/3} = a^{2/3}\] ?
If \[\tan \left( x + y \right) + \tan \left( x - y \right) = 1, \text{ find} \frac{dy}{dx}\] ?
Differentiate \[e^{x \log x}\] ?
If \[y = \left( \tan x \right)^{\left( \tan x \right)^{\left( \tan x \right)^{. . . \infty}}}\], prove that \[\frac{dy}{dx} = 2\ at\ x = \frac{\pi}{4}\] ?
Find \[\frac{dy}{dx}\] , when \[x = \cos^{- 1} \frac{1}{\sqrt{1 + t^2}} \text{ and y } = \sin^{- 1} \frac{t}{\sqrt{1 + t^2}}, t \in R\] ?
Differentiate \[\cos^{- 1} \left( 4 x^3 - 3x \right)\] with respect to \[\tan^{- 1} \left( \frac{\sqrt{1 - x^2}}{x} \right), \text{ if }\frac{1}{2} < x < 1\] ?
If \[f\left( x \right) = x + 1\] , then write the value of \[\frac{d}{dx} \left( fof \right) \left( x \right)\] ?
If \[y = \sin^{- 1} \left( \sin x \right), - \frac{\pi}{2} \leq x \leq \frac{\pi}{2}\] ,Then, write the value of \[\frac{dy}{dx} \text{ for } x \in \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \] ?
If \[y = \sin^{- 1} x + \cos^{- 1} x\] ,find \[\frac{dy}{dx}\] ?
If \[\left| x \right| < 1 \text{ and y} = 1 + x + x^2 + . . \] to ∞, then find the value of \[\frac{dy}{dx}\] ?
If \[x = 3\sin t - \sin3t, y = 3\cos t - \cos3t \text{ find }\frac{dy}{dx} \text{ at } t = \frac{\pi}{3}\] ?
If \[y = \sqrt{\sin x + y},\text { then } \frac{dy}{dx} =\] __________ .
If \[3 \sin \left( xy \right) + 4 \cos \left( xy \right) = 5, \text { then } \frac{dy}{dx} =\] _____________ .
If \[f\left( x \right) = \left| x^2 - 9x + 20 \right|\] then `f' (x)` is equal to ____________ .
Find the second order derivatives of the following function x3 + tan x ?
If \[y = \frac{\log x}{x}\] show that \[\frac{d^2 y}{d x^2} = \frac{2 \log x - 3}{x^3}\] ?
If x = a (θ − sin θ), y = a (1 + cos θ) prove that, find \[\frac{d^2 y}{d x^2}\] ?
If \[y = e^{2x} \left( ax + b \right)\] show that \[y_2 - 4 y_1 + 4y = 0\] ?
If y = tan−1 x, show that \[\left( 1 + x^2 \right) \frac{d^2 y}{d x^2} + 2x\frac{dy}{dx} = 0\] ?
If y = ae2x + be−x, show that, \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\] ?
\[\text { Find A and B so that y = A } \sin3x + B \cos3x \text { satisfies the equation }\]
\[\frac{d^2 y}{d x^2} + 4\frac{d y}{d x} + 3y = 10 \cos3x \] ?
If x = t2 and y = t3, find \[\frac{d^2 y}{d x^2}\] ?
If y = a + bx2, a, b arbitrary constants, then
If y = sin (m sin−1 x), then (1 − x2) y2 − xy1 is equal to
If x = f(t) cos t − f' (t) sin t and y = f(t) sin t + f'(t) cos t, then\[\left( \frac{dx}{dt} \right)^2 + \left( \frac{dy}{dt} \right)^2 =\]
Differentiate sin(log sin x) ?
The number of road accidents in the city due to rash driving, over a period of 3 years, is given in the following table:
Year | Jan-March | April-June | July-Sept. | Oct.-Dec. |
2010 | 70 | 60 | 45 | 72 |
2011 | 79 | 56 | 46 | 84 |
2012 | 90 | 64 | 45 | 82 |
Calculate four quarterly moving averages and illustrate them and original figures on one graph using the same axes for both.