Advertisements
Advertisements
Question
If \[y = \sin \left( x^x \right)\] prove that \[\frac{dy}{dx} = \cos \left( x^x \right) \cdot x^x \left( 1 + \log x \right)\] ?
Solution
\[\text{ Let y} = \sin\left( x^x \right) . . . \left( i \right)\]
\[\text{ Also, Let u} = x^x . . . \left( ii \right)\]
\[\text{ Taking log on both sides}, \]
\[ \Rightarrow \log u = \log x^x \]
\[ \Rightarrow \log u = x\log x\]
Differentiating both sides with respect to x,
\[\frac{1}{u}\frac{du}{dx} = \frac{d}{dx}\left( x \log x \right)\]
\[ \Rightarrow \frac{1}{u}\frac{du}{dx} = x\frac{d}{dx}\left( \log x \right) + \log x\frac{d}{dx}x\]
\[ \Rightarrow \frac{1}{u}\frac{du}{dx} = x\left( \frac{1}{x} \right) + \log x\left( 1 \right)\]
\[ \Rightarrow \frac{1}{u}\frac{du}{dx} = 1 + \log x\]
\[ \Rightarrow \frac{du}{dx} = u\left( 1 + \log x \right)\]
\[ \Rightarrow \frac{du}{dx} = x^x \left( 1 + \log x \right) . . . \left( iii \right) \left[ \text{ using equation }\left( ii \right) \right]\]
\[\text{ Now, using equation} \left( ii \right) \text{ in equation} \left( i \right), \]
\[y = \sin u\]
\[\text{ Differentiating with respect to x,} \]
\[\frac{dy}{dx} = \frac{d}{dx}\left( \sin u \right)\]
\[ \Rightarrow \frac{dy}{dx} = \cos u\frac{du}{dx}\]
\[\text{ Using equation} \left( ii \right)\text{ and } \left( iii \right), \]
\[\frac{dy}{dx} = \cos\left( x^x \right) \times x^x \left( 1 + \log x \right)\]
APPEARS IN
RELATED QUESTIONS
Differentiate the following functions from first principles ecos x.
Differentiate the following functions from first principles log cos x ?
Differentiate the following functions from first principles sin−1 (2x + 3) ?
Differentiate tan2 x ?
Differentiate \[\frac{e^{2x} + e^{- 2x}}{e^{2x} - e^{- 2x}}\] ?
Differentiate \[\frac{2^x \cos x}{\left( x^2 + 3 \right)^2}\] ?
If \[y = \sqrt{x^2 + a^2}\] prove that \[y\frac{dy}{dx} - x = 0\] ?
Differentiate \[\sin^{- 1} \left( 2 x^2 - 1 \right), 0 < x < 1\] ?
Differentiate \[\sin^{- 1} \left( 1 - 2 x^2 \right), 0 < x < 1\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{a + \sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?
Differentiate \[\cos^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{4x}{1 - 4 x^2} \right), - \frac{1}{2} < x < \frac{1}{2}\] ?
Differentiate \[\cos^{- 1} \left( \frac{1 - x^{2n}}{1 + x^{2n}} \right), < x < \infty\] ?
If \[xy = 1\] prove that \[\frac{dy}{dx} + y^2 = 0\] ?
If \[\tan^{- 1} \left( \frac{x^2 - y^2}{x^2 + y^2} \right) = a\] Prove that \[\frac{dy}{dx} = \frac{x}{y}\frac{\left( 1 - \tan a \right)}{\left( 1 + \tan a \right)}\] ?
If \[\sin \left( xy \right) + \frac{y}{x} = x^2 - y^2 , \text{ find} \frac{dy}{dx}\] ?
If \[\cos y = x \cos \left( a + y \right), \text{ with } \cos a \neq \pm 1, \text{ prove that } \frac{dy}{dx} = \frac{\cos^2 \left( a + y \right)}{\sin a}\] ?
Differentiate \[x^{\cos^{- 1} x}\] ?
Differentiate \[{10}^{ \log \sin x }\] ?
Differentiate \[x^{x^2 - 3} + \left( x - 3 \right)^{x^2}\] ?
Find \[\frac{dy}{dx}\] , when \[x = \frac{1 - t^2}{1 + t^2} \text{ and y } = \frac{2 t}{1 + t^2}\] ?
If \[x = \left( t + \frac{1}{t} \right)^a , y = a^{t + \frac{1}{t}} , \text{ find } \frac{dy}{dx}\] ?
\[\text { If }x = \cos t\left( 3 - 2 \cos^2 t \right), y = \sin t\left( 3 - 2 \sin^2 t \right) \text { find the value of } \frac{dy}{dx}\text{ at }t = \frac{\pi}{4}\] ?
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( 0, \frac{1}{\sqrt{2}} \right)\] ?
If \[y = \tan^{- 1} \left( \frac{1 - x}{1 + x} \right), \text{ find} \frac{dy}{dx}\] ?
The derivative of \[\sec^{- 1} \left( \frac{1}{2 x^2 + 1} \right) \text { w . r . t }. \sqrt{1 + 3 x} \text { at } x = - 1/3\]
If \[f\left( x \right) = \sqrt{x^2 + 6x + 9}, \text { then } f'\left( x \right)\] is equal to ______________ .
If y = 2 sin x + 3 cos x, show that \[\frac{d^2 y}{d x^2} + y = 0\] ?
If \[y = e^{\tan^{- 1} x}\] prove that (1 + x2)y2 + (2x − 1)y1 = 0 ?
If y = ex (sin x + cos x) prove that \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\] ?
If y = 3 e2x + 2 e3x, prove that \[\frac{d^2 y}{d x^2} - 5\frac{dy}{dx} + 6y = 0\] ?
If y = cosec−1 x, x >1, then show that \[x\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + \left( 2 x^2 - 1 \right)\frac{dy}{dx} = 0\] ?
\[\text{ If x } = a\left( \cos t + \log \tan\frac{t}{2} \right) \text { and y } = a\left( \sin t \right), \text { evaluate } \frac{d^2 y}{d x^2} \text { at t } = \frac{\pi}{3} \] ?
If \[x = 3 \cos t - 2 \cos^3 t, y = 3\sin t - 2 \sin^3 t,\] find \[\frac{d^2 y}{d x^2} \] ?
If y = x + ex, find \[\frac{d^2 x}{d y^2}\] ?
If \[f\left( x \right) = \frac{\sin^{- 1} x}{\sqrt{1 - x^2}}\] then (1 − x)2 f '' (x) − xf(x) =
If y = sin (m sin−1 x), then (1 − x2) y2 − xy1 is equal to
If x = sin t and y = sin pt, prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] .