Advertisements
Advertisements
Question
If y = cosec−1 x, x >1, then show that \[x\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + \left( 2 x^2 - 1 \right)\frac{dy}{dx} = 0\] ?
Solution
Here,
\[y = {cosec}^{- 1} x\]
\[\text { Differentiating w . r . t . x, we get }\]
\[\frac{d y}{d x} = \frac{- 1}{x\sqrt{x^2 - 1}}\]
\[\text { Differentiating again w . r . t . x, we get }\]
\[\frac{d^2 y}{d x^2} = \frac{\sqrt{x^2 - 1} + \frac{x^2}{\sqrt{x^2 - 1}}}{x^2 \left( x^2 - 1 \right)}\]
\[ \Rightarrow \frac{d^2 y}{d x^2} = \frac{x^2 - 1 + x^2}{x^2 \left( x^2 - 1 \right)\sqrt{x^2 - 1}}\]
\[ \Rightarrow \frac{d^2 y}{d x^2} = \frac{2 x^2 - 1}{x^2 \left( x^2 - 1 \right)\sqrt{x^2 - 1}}\]
\[ \Rightarrow \frac{d^2 y}{d x^2} = \frac{2}{\left( x^2 - 1 \right)\sqrt{x^2 - 1}} - \frac{1}{x^2 \left( x^2 - 1 \right)\sqrt{x^2 - 1}}\]
\[ \Rightarrow \left( x^2 - 1 \right)\frac{d^2 y}{d x^2} = \frac{2}{\sqrt{x^2 - 1}} - \frac{1}{x^2 \sqrt{x^2 - 1}}\]
\[ \Rightarrow \left( x^2 - 1 \right)\frac{d^2 y}{d x^2} = - 2x\frac{dy}{dx} + \frac{1}{x}\frac{dy}{dx}\]
\[ \Rightarrow x\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} = - \left( 2 x^2 - 1 \right)\frac{dy}{dx}\]
\[ \Rightarrow x\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + \left( 2 x^2 - 1 \right)\frac{dy}{dx} = 0\]
Hence proved.
APPEARS IN
RELATED QUESTIONS
Differentiate the following functions from first principles e3x.
Differentiate the following functions from first principles log cos x ?
Differentiate the following functions from first principles x2ex ?
Differentiate \[\sin \left( \frac{1 + x^2}{1 - x^2} \right)\] ?
Differentiate \[\frac{e^{2x} + e^{- 2x}}{e^{2x} - e^{- 2x}}\] ?
Differentiate \[\log \left( \tan^{- 1} x \right)\]?
Differentiate \[x \sin 2x + 5^x + k^k + \left( \tan^2 x \right)^3\] ?
If \[y = \sqrt{x + 1} + \sqrt{x - 1}\] , prove that \[\sqrt{x^2 - 1}\frac{dy}{dx} = \frac{1}{2}y\] ?
If \[y = \sqrt{x^2 + a^2}\] prove that \[y\frac{dy}{dx} - x = 0\] ?
Differentiate \[\sin^{- 1} \left\{ \sqrt{1 - x^2} \right\}, 0 < x < 1\] ?
Differentiate \[\sin^{- 1} \left( 2 x^2 - 1 \right), 0 < x < 1\] ?
Differentiate the following with respect to x:
\[\cos^{- 1} \left( \sin x \right)\]
Find \[\frac{dy}{dx}\] in the following case \[4x + 3y = \log \left( 4x - 3y \right)\] ?
If \[y \sqrt{x^2 + 1} = \log \left( \sqrt{x^2 + 1} - x \right)\] ,Show that \[\left( x^2 + 1 \right) \frac{dy}{dx} + xy + 1 = 0\] ?
If \[\sqrt{y + x} + \sqrt{y - x} = c, \text {show that } \frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\] ?
Differentiate \[x^{\sin x}\] ?
Differentiate \[\left( \sin x \right)^{\log x}\] ?
Differentiate \[x^{x^2 - 3} + \left( x - 3 \right)^{x^2}\] ?
Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\cot x} + \left( \cot x \right)^{\tan x}\] ?
Find \[\frac{dy}{dx}\]
\[y = x^x + x^{1/x}\] ?
If \[x^y \cdot y^x = 1\] , prove that \[\frac{dy}{dx} = - \frac{y \left( y + x \log y \right)}{x \left( y \log x + x \right)}\] ?
If \[\left( \sin x \right)^y = x + y\] , prove that \[\frac{dy}{dx} = \frac{1 - \left( x + y \right) y \cot x}{\left( x + y \right) \log \sin x - 1}\] ?
If \[y = \sqrt{x + \sqrt{x + \sqrt{x + . . . to \infty ,}}}\] prove that \[\frac{dy}{dx} = \frac{1}{2 y - 1}\] ?
Differentiate log (1 + x2) with respect to tan−1 x ?
\[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cot^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right),\text { if }0 < x < 1\] ?
If \[y = \log \left| 3x \right|, x \neq 0, \text{ find } \frac{dy}{dx} \] ?
If f (x) is an even function, then write whether `f' (x)` is even or odd ?
If \[x = 3\sin t - \sin3t, y = 3\cos t - \cos3t \text{ find }\frac{dy}{dx} \text{ at } t = \frac{\pi}{3}\] ?
If f (x) = logx2 (log x), the `f' (x)` at x = e is ____________ .
If \[y = \left( 1 + \frac{1}{x} \right)^x , \text{ then} \frac{dy}{dx} =\] ____________ .
Let \[\cup = \sin^{- 1} \left( \frac{2 x}{1 + x^2} \right) \text { and }V = \tan^{- 1} \left( \frac{2 x}{1 - x^2} \right), \text { then } \frac{d \cup}{dV} =\] ____________ .
If \[y = \log \sqrt{\tan x}\] then the value of \[\frac{dy}{dx}\text { at }x = \frac{\pi}{4}\] is given by __________ .
Find the second order derivatives of the following function e6x cos 3x ?
If log y = tan−1 x, show that (1 + x2)y2 + (2x − 1) y1 = 0 ?
\[\text{ If x } = a\left( \cos t + \log \tan\frac{t}{2} \right) \text { and y } = a\left( \sin t \right), \text { evaluate } \frac{d^2 y}{d x^2} \text { at t } = \frac{\pi}{3} \] ?
If x = f(t) and y = g(t), then write the value of \[\frac{d^2 y}{d x^2}\] ?
If y = (sin−1 x)2, then (1 − x2)y2 is equal to
If y = etan x, then (cos2 x)y2 =