Advertisements
Advertisements
Question
If f (x) is an even function, then write whether `f' (x)` is even or odd ?
Solution
\[\text {We have }, f\left( x \right) \text{ is an even function} . \]
\[ \Rightarrow f\left( - x \right) = f\left( x \right)\]
\[\Rightarrow \frac{d}{dx}\left\{ f\left( - x \right) \right\} = \frac{d}{dx}\left\{ f\left( x \right) \right\}\]
\[ \Rightarrow f'\left( - x \right)\frac{d}{dx}\left( - x \right) = f'\left( x \right)\]
\[ \Rightarrow f'\left( - x \right) \times \left( - 1 \right) = f'\left( x \right)\]
\[ \Rightarrow - f'\left( - x \right) = f'\left( x \right)\]
\[ \Rightarrow f'\left( - x \right) = - f'\left( x \right)\]
\[\text{ Thus,} f'\left( x \right) \text{ is an odd function } .\]
APPEARS IN
RELATED QUESTIONS
Differentiate tan2 x ?
Differentiate \[\sqrt{\frac{a^2 - x^2}{a^2 + x^2}}\] ?
Differentiate \[\log \sqrt{\frac{1 - \cos x}{1 + \cos x}}\] ?
Differentiate \[\tan \left( e^{\sin x }\right)\] ?
Differentiate \[e^{\tan^{- 1}} \sqrt{x}\] ?
Differentiate \[\frac{\sqrt{x^2 + 1} + \sqrt{x^2 - 1}}{\sqrt{x^2 + 1} - \sqrt{x^2 - 1}}\] ?
Differentiate \[3 e^{- 3x} \log \left( 1 + x \right)\] ?
If \[y = e^x + e^{- x}\] prove that \[\frac{dy}{dx} = \sqrt{y^2 - 4}\] ?
Prove that \[\frac{d}{dx} \left\{ \frac{x}{2}\sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{- 1} \frac{x}{a} \right\} = \sqrt{a^2 - x^2}\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{\sin x + \cos x}{\sqrt{2}} \right\}, - \frac{3 \pi}{4} < x < \frac{\pi}{4}\] ?
Differentiate \[\tan^{- 1} \left( \frac{5 x}{1 - 6 x^2} \right), - \frac{1}{\sqrt{6}} < x < \frac{1}{\sqrt{6}}\] ?
Find \[\frac{dy}{dx}\] in the following case: \[y^3 - 3x y^2 = x^3 + 3 x^2 y\] ?
Find \[\frac{dy}{dx}\] in the following case \[\left( x + y \right)^2 = 2axy\] ?
If \[y = x \sin \left( a + y \right)\] ,Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?
If \[\tan \left( x + y \right) + \tan \left( x - y \right) = 1, \text{ find} \frac{dy}{dx}\] ?
If \[\sin^2 y + \cos xy = k,\] find \[\frac{dy}{dx}\] at \[x = 1 , \] \[y = \frac{\pi}{4} .\]
If \[y = \left\{ \log_{\cos x} \sin x \right\} \left\{ \log_{\sin x} \cos x \right\}^{- 1} + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right), \text{ find } \frac{dy}{dx} \text{ at }x = \frac{\pi}{4}\] ?
Differentiate \[x^{\sin^{- 1} x}\] ?
Differentiate \[\left( \cos x \right)^x + \left( \sin x \right)^{1/x}\] ?
find \[\frac{dy}{dx}\] \[y = \frac{\left( x^2 - 1 \right)^3 \left( 2x - 1 \right)}{\sqrt{\left( x - 3 \right) \left( 4x - 1 \right)}}\] ?
If \[y = x \sin \left( a + y \right)\] , prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?
If \[y = \left( \sin x - \cos x \right)^{\sin x - \cos x} , \frac{\pi}{4} < x < \frac{3\pi}{4}, \text{ find} \frac{dy}{dx}\] ?
Find \[\frac{dy}{dx}\] ,When \[x = a \left( 1 - \cos \theta \right) \text{ and } y = a \left( \theta + \sin \theta \right) \text{ at } \theta = \frac{\pi}{2}\] ?
If \[x = a\left( t + \frac{1}{t} \right) \text{ and y } = a\left( t - \frac{1}{t} \right)\] ,prove that \[\frac{dy}{dx} = \frac{x}{y}\]?
\[\text { If }x = \cos t\left( 3 - 2 \cos^2 t \right), y = \sin t\left( 3 - 2 \sin^2 t \right) \text { find the value of } \frac{dy}{dx}\text{ at }t = \frac{\pi}{4}\] ?
If \[x = \frac{1 + \log t}{t^2}, y = \frac{3 + 2\log t}{t}, \text { find } \frac{dy}{dx}\] ?
If \[y = x \left| x \right|\] , find \[\frac{dy}{dx} \text{ for } x < 0\] ?
If \[y = \sec^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right)\] then write the value of \[\frac{dy}{dx} \] ?
Differential coefficient of sec(tan−1 x) is ______.
If \[x = a \cos^3 \theta, y = a \sin^3 \theta, \text { then } \sqrt{1 + \left( \frac{dy}{dx} \right)^2} =\] ____________ .
If \[f\left( x \right) = \sqrt{x^2 + 6x + 9}, \text { then } f'\left( x \right)\] is equal to ______________ .
Find the second order derivatives of the following function ex sin 5x ?
If x = sin t, y = sin pt, prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?
If y = cos−1 x, find \[\frac{d^2 y}{d x^2}\] in terms of y alone ?
If \[f\left( x \right) = \frac{\sin^{- 1} x}{\sqrt{1 - x^2}}\] then (1 − x)2 f '' (x) − xf(x) =
If \[\frac{d}{dx}\left[ x^n - a_1 x^{n - 1} + a_2 x^{n - 2} + . . . + \left( - 1 \right)^n a_n \right] e^x = x^n e^x\] then the value of ar, 0 < r ≤ n, is equal to
If `x=a (cos t +t sint )and y= a(sint-cos t )` Prove that `Sec^3 t/(at),0<t< pi/2`