Advertisements
Advertisements
Question
If \[x = a \cos^3 \theta, y = a \sin^3 \theta, \text { then } \sqrt{1 + \left( \frac{dy}{dx} \right)^2} =\] ____________ .
Options
\[\tan^2 \theta\]
\[\sec^2 \theta\]
\[\sec \theta\]
\[\left| \sec \theta \right|\]
Solution
\[\left| \sec \theta \right|\]
\[\text { We have }, x = a \cos^3 \theta\]
\[ \Rightarrow \frac{dx}{d\theta} = a\frac{d}{d\theta}\left( \cos^3 \theta \right)\]
\[ \Rightarrow \frac{dx}{d\theta} = 3a \cos^2 \theta\frac{d}{d\theta}\left( \cos\theta \right)\]
\[ \Rightarrow \frac{dx}{d\theta} = - 3a \cos^2 \theta\sin\theta .......... \left( 1 \right)\]
\[\text { and }, \]
\[ y = a \sin^3 \theta\]
\[ \Rightarrow \frac{dy}{d\theta} = a\frac{d}{d\theta}\left( \sin^3 \theta \right)\]
\[ \Rightarrow \frac{dy}{d\theta} = 3a \sin^2 \theta\frac{d}{d\theta}\left( \sin\theta \right)\]
\[ \Rightarrow \frac{dy}{d\theta} = 3a \sin^2 \theta \cos\theta ............ \left( 2 \right)\]
\[\text { Dividing } \left( 2 \right) \text { by } \left( 1 \right), \text { we get }, \]
\[\frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{3a \sin^2 \theta \cos\theta}{- 3a \cos^2 \theta\sin\theta}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\sin\theta}{- \cos\theta}\]
\[ \Rightarrow \frac{dy}{dx} = - \tan\theta\]
\[\text { Now }, \sqrt{1 + \left( \frac{dy}{dx} \right)^2} = \sqrt{1 + \tan^2 \theta} = \sqrt{\sec^2 \theta} = \left| \sec\theta \right|\]
APPEARS IN
RELATED QUESTIONS
If the function f(x)=2x3−9mx2+12m2x+1, where m>0 attains its maximum and minimum at p and q respectively such that p2=q, then find the value of m.
Differentiate the following functions from first principles e3x.
Differentiate the following functions from first principles \[e^\sqrt{2x}\].
Differentiate tan2 x ?
Differentiate logx 3 ?
Differentiate \[3^{x^2 + 2x}\] ?
Differentiate \[\sqrt{\frac{1 + x}{1 - x}}\] ?
Differentiate \[\frac{3 x^2 \sin x}{\sqrt{7 - x^2}}\] ?
If \[y = \sqrt{x^2 + a^2}\] prove that \[y\frac{dy}{dx} - x = 0\] ?
Differentiate \[\sin^{- 1} \left\{ \sqrt{\frac{1 - x}{2}} \right\}, 0 < x < 1\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{1 + \sqrt{1 - x^2}} \right\}, - 1 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{\sin x}{1 + \cos x} \right), - \pi < x < \pi\] ?
If \[y = \sin^{- 1} \left( 6x\sqrt{1 - 9 x^2} \right), - \frac{1}{3\sqrt{2}} < x < \frac{1}{3\sqrt{2}}\] \[\frac{dy}{dx} \] ?
Find \[\frac{dy}{dx}\] in the following case \[\tan^{- 1} \left( x^2 + y^2 \right) = a\] ?
Differentiate \[x^{\cos^{- 1} x}\] ?
Differentiate \[x^{\sin^{- 1} x}\] ?
Differentiate \[x^\left( \sin x - \cos x \right) + \frac{x^2 - 1}{x^2 + 1}\] ?
Find \[\frac{dy}{dx}\] \[y = e^{3x} \sin 4x \cdot 2^x\] ?
Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\cot x} + \left( \cot x \right)^{\tan x}\] ?
If \[\left( \sin x \right)^y = \left( \cos y \right)^x ,\], prove that \[\frac{dy}{dx} = \frac{\log \cos y - y cot x}{\log \sin x + x \tan y}\] ?
If \[\left( \cos x \right)^y = \left( \tan y \right)^x\] , prove that \[\frac{dy}{dx} = \frac{\log \tan y + y \tan x}{ \log \cos x - x \sec y \ cosec\ y }\] ?
If \[y^x + x^y + x^x = a^b\] ,find \[\frac{dy}{dx}\] ?
If \[y = \sqrt{x + \sqrt{x + \sqrt{x + . . . to \infty ,}}}\] prove that \[\frac{dy}{dx} = \frac{1}{2 y - 1}\] ?
Find \[\frac{dy}{dx}\] , when \[x = b \sin^2 \theta \text{ and } y = a \cos^2 \theta\] ?
Let g (x) be the inverse of an invertible function f (x) which is derivable at x = 3. If f (3) = 9 and `f' (3) = 9`, write the value of `g' (9)`.
If \[y = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] write the value of \[\frac{dy}{dx}\text { for } x > 1\] ?
If \[y = \tan^{- 1} \left( \frac{1 - x}{1 + x} \right), \text{ find} \frac{dy}{dx}\] ?
If \[y = \log \sqrt{\tan x}\] then the value of \[\frac{dy}{dx}\text { at }x = \frac{\pi}{4}\] is given by __________ .
If \[\sin y = x \cos \left( a + y \right), \text { then } \frac{dy}{dx}\] is equal to ______________ .
If y = 2 sin x + 3 cos x, show that \[\frac{d^2 y}{d x^2} + y = 0\] ?
If x = 2 cos t − cos 2t, y = 2 sin t − sin 2t, find \[\frac{d^2 y}{d x^2}\text{ at } t = \frac{\pi}{2}\] ?
\[\text{ If x } = a\left( \cos t + \log \tan\frac{t}{2} \right) \text { and y } = a\left( \sin t \right), \text { evaluate } \frac{d^2 y}{d x^2} \text { at t } = \frac{\pi}{3} \] ?
If x = t2 and y = t3, find \[\frac{d^2 y}{d x^2}\] ?
If y = etan x, then (cos2 x)y2 =
Differentiate `log [x+2+sqrt(x^2+4x+1)]`
Find the height of a cylinder, which is open at the top, having a given surface area, greatest volume, and radius r.
If p, q, r, s are real number and pr = 2(q + s) then for the equation x2 + px + q = 0 and x2 + rx + s = 0 which of the following statement is true?
Range of 'a' for which x3 – 12x + [a] = 0 has exactly one real root is (–∞, p) ∪ [q, ∞), then ||p| – |q|| is ______.