English

Find D Y D X Y = E 3 X Sin 4 X ⋅ 2 X ? - Mathematics

Advertisements
Advertisements

Question

Find  \[\frac{dy}{dx}\] \[y = e^{3x} \sin 4x \cdot 2^x\] ?

 

Solution

\[\text{ We have, y } = e^{3x} \times \sin4x \times 2^x . . . \left( i \right)\]

Taking log on both sides,

\[\log y = \log e^{3x} + \log\sin4x + \log 2^x \]
\[ \Rightarrow \log y = 3x \log e +  \log\sin4x + x \log2 \]
\[ \Rightarrow \log y = 3x + \log\sin4x + x \log2\]

Differentiating with respect to x,

\[\frac{1}{y}\frac{dy}{dx} = \frac{d}{dx}\left( 3x \right) + \frac{d}{dx}\left( \log \sin4x \right) + \frac{d}{dx}\left( x \log2 \right)\]
\[ \Rightarrow \frac{1}{y}\frac{dy}{dx} = 3 + \frac{1}{\sin4x}\frac{d}{dx}\left( \sin4x \right) + \log2\left( 1 \right)\]
\[ \Rightarrow \frac{1}{y}\frac{dy}{dx} = 3 + \frac{1}{\sin4x}\left( \cos4x \right)\frac{d}{dx}\left( 4x \right) + \log2\]
\[ \Rightarrow \frac{1}{y}\frac{dy}{dx} = 3 + \cot4x\left( 4 \right) + \log2\]
\[ \Rightarrow \frac{1}{y}\frac{dy}{dx} = 3 + 4\cot4x + \log2\]
\[ \Rightarrow \frac{dy}{dx} = y\left[ 3 + 4\cot4x + \log2 \right]\]

\[ \Rightarrow \frac{dy}{dx} = e^{3x} \sin4x 2^x \left[ 3 + 4\cot4x + \log2 \right] \left[ \text{ Using equation} \left( i \right) \right]\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Differentiation - Exercise 11.05 [Page 89]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 11 Differentiation
Exercise 11.05 | Q 23 | Page 89

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove that `y=(4sintheta)/(2+costheta)-theta `


Differentiate the following functions from first principles sin−1 (2x + 3) ?


Differentiate etan x ?


Differentiate \[e^{\tan 3 x} \] ?


Differentiate \[x \sin 2x + 5^x + k^k + \left( \tan^2 x \right)^3\] ?


Differentiate \[\sin^2 \left\{ \log \left( 2x + 3 \right) \right\}\] ?


Differentiate \[\frac{x^2 \left( 1 - x^2 \right)}{\cos 2x}\] ?


Differentiate \[\log \left( \cos x^2 \right)\] ?


If \[y = \log \left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]prove that \[\frac{dy}{dx} = \frac{x - 1}{2x \left( x + 1 \right)}\] ?

 


If \[y = \frac{e^x - e^{- x}}{e^x + e^{- x}}\] .prove that \[\frac{dy}{dx} = 1 - y^2\] ?


If \[y = x \sin^{- 1} x + \sqrt{1 - x^2}\] ,prove that \[\frac{dy}{dx} = \sin^{- 1} x\] ?


Differentiate \[\sin^{- 1} \left( 1 - 2 x^2 \right), 0 < x < 1\] ?


Differentiate \[\sin^{- 1} \left\{ \frac{\sqrt{1 + x} + \sqrt{1 - x}}{2} \right\}, 0 < x < 1\] ?


Differentiate the following with respect to x

\[\cos^{- 1} \left( \sin x \right)\]


If \[y = \sin \left[ 2 \tan^{- 1} \left\{ \frac{\sqrt{1 - x}}{1 + x} \right\} \right], \text{ find } \frac{dy}{dx}\] ?


If \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, - \frac{1}{2} < x < 0, \text{ find } \frac{dy}{dx} \] ?


If \[y = \sin^{- 1} \left( 6x\sqrt{1 - 9 x^2} \right), - \frac{1}{3\sqrt{2}} < x < \frac{1}{3\sqrt{2}}\] \[\frac{dy}{dx} \] ?


If \[x \sqrt{1 + y} + y \sqrt{1 + x} = 0\] , prove that \[\left( 1 + x \right)^2 \frac{dy}{dx} + 1 = 0\]  ?


Find \[\frac{dy}{dx}\]  \[y = x^n + n^x + x^x + n^n\] ?

Find  \[\frac{dy}{dx}\]  \[y = \left( \sin x \right)^{\cos x} + \left( \cos x \right)^{\sin x}\] ?

 


Find \[\frac{dy}{dx}\]

\[y = x^x + x^{1/x}\] ?


If \[y = \sqrt{\cos x + \sqrt{\cos x + \sqrt{\cos x + . . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sin x}{1 - 2 y}\] ?


If \[y = \log \sqrt{\tan x}\] then the value of \[\frac{dy}{dx}\text { at }x = \frac{\pi}{4}\] is given by __________ .


If \[y = \log \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] __________ .


Find the second order derivatives of the following function  x3 + tan x ?


If y = x + tan x, show that  \[\cos^2 x\frac{d^2 y}{d x^2} - 2y + 2x = 0\] ?


If y = x3 log x, prove that \[\frac{d^4 y}{d x^4} = \frac{6}{x}\] ?


If y = log (sin x), prove that \[\frac{d^3 y}{d x^3} = 2 \cos \ x \ {cosec}^3 x\] ?


If y = ex (sin + cos x) prove that \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\] ?


\[\text { If x } = \cos t + \log \tan\frac{t}{2}, y = \sin t, \text { then find the value of } \frac{d^2 y}{d t^2} \text { and } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?


\[\text { If x } = a \sin t - b \cos t, y = a \cos t + b \sin t, \text { prove that } \frac{d^2 y}{d x^2} = - \frac{x^2 + y^2}{y^3} \] ?


If x = t2 and y = t3, find \[\frac{d^2 y}{d x^2}\] ?


If x = 2aty = at2, where a is a constant, then find \[\frac{d^2 y}{d x^2} \text { at }x = \frac{1}{2}\] ?


If x = at2, y = 2 at, then \[\frac{d^2 y}{d x^2} =\] 

 


If y = axn+1 + bx−n, then \[x^2 \frac{d^2 y}{d x^2} =\] 

 


If x = f(t) cos t − f' (t) sin t and y = f(t) sin t + f'(t) cos t, then\[\left( \frac{dx}{dt} \right)^2 + \left( \frac{dy}{dt} \right)^2 =\]

 


Find the minimum value of (ax + by), where xy = c2.


Differentiate sin(log sin x) ?


f(x) = xx has a stationary point at ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×