Advertisements
Advertisements
Question
Find \[\frac{dy}{dx}\] \[y = \frac{e^{ax} \cdot \sec x \cdot \log x}{\sqrt{1 - 2x}}\] ?
Solution
\[\text{ We have, y } = \frac{e^{ax} \sec x \log x}{\sqrt{1 - 2x}} . . . \left( i \right)\]
\[ \Rightarrow y = \frac{e^{ax} \sec x \log x}{\left( 1 - 2x \right)^\frac{1}{2}}\]
Taking log on both sides
\[\log y = \log e^{ax} + logsec x + \log \log x - \frac{1}{2}\log\left( 1 - 2x \right) \]
\[ \Rightarrow \log y = ax + \log\left( \sec x \right) + \log\left( \log x \right) - \frac{1}{2}\log\left( 1 - 2x \right) \]
Differentiating with respect to x using chain rule,
\[\frac{1}{y}\frac{dy}{dx} = \frac{d}{dx}\left( ax \right) + \frac{d}{dx}\left( \log \sec x \right) + \frac{d}{dx}\left( \log \log x \right) - \frac{1}{2}\log\left( 1 - 2x \right)\]
\[ \Rightarrow \frac{1}{y}\frac{dy}{dx} = a + \frac{1}{\sec x}\frac{d}{dx}\left( \sec x \right) + \frac{1}{\log x}\frac{d}{dx}\left( \log x \right) - \frac{1}{2}\left( \frac{1}{1 - 2x} \right)\frac{d}{dx}\left( 1 - 2x \right)\]
\[ \Rightarrow \frac{1}{y}\frac{dy}{dx} = a + \frac{\sec x \tan x}{\sec x} + \frac{1}{\left( \log x \right)}\left( \frac{1}{x} \right) - \frac{1}{2}\left( \frac{1}{1 - 2x} \right)\left( - 2 \right)\]
\[ \Rightarrow \frac{dy}{dx} = y\left[ a + \tan x + \frac{1}{x \log x} + \frac{1}{1 - 2x} \right]\]
\[ \Rightarrow \frac{dy}{dx} = \frac{e^{ax} \sec x \log x}{\sqrt{1 - 2x}}\left[ a + \tan x + \frac{1}{x \log x} + \frac{1}{1 - 2x} \right] \left[ \text{ Using equation }\left( i \right) \right]\]
APPEARS IN
RELATED QUESTIONS
If y = xx, prove that `(d^2y)/(dx^2)−1/y(dy/dx)^2−y/x=0.`
Differentiate the following functions from first principles log cos x ?
Differentiate \[\frac{e^{2x} + e^{- 2x}}{e^{2x} - e^{- 2x}}\] ?
Differentiate \[\frac{3 x^2 \sin x}{\sqrt{7 - x^2}}\] ?
Differentiate \[\left( \sin^{- 1} x^4 \right)^4\] ?
If \[y = \log \left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]prove that \[\frac{dy}{dx} = \frac{x - 1}{2x \left( x + 1 \right)}\] ?
If \[y = e^x \cos x\] ,prove that \[\frac{dy}{dx} = \sqrt{2} e^x \cdot \cos \left( x + \frac{\pi}{4} \right)\] ?
Differentiate \[\sin^{- 1} \left\{ \sqrt{\frac{1 - x}{2}} \right\}, 0 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{\sqrt{1 + a^2 x^2} - 1}{ax} \right), x \neq 0\] ?
Differentiate \[\tan^{- 1} \left( \frac{\sin x}{1 + \cos x} \right), - \pi < x < \pi\] ?
If \[y = \cos^{- 1} \left\{ \frac{2x - 3 \sqrt{1 - x^2}}{\sqrt{13}} \right\}, \text{ find } \frac{dy}{dx}\] ?
If \[\sqrt{1 - x^2} + \sqrt{1 - y^2} = a \left( x - y \right)\] , prove that \[\frac{dy}{dx} = \frac{\sqrt{1 - y^2}}{1 - x^2}\] ?
Differentiate \[e^{x \log x}\] ?
Find \[\frac{dy}{dx}\] \[y = e^{3x} \sin 4x \cdot 2^x\] ?
Find \[\frac{dy}{dx}\]
\[y = x^x + x^{1/x}\] ?
If \[y = \log\frac{x^2 + x + 1}{x^2 - x + 1} + \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{\sqrt{3} x}{1 - x^2} \right), \text{ find } \frac{dy}{dx} .\] ?
If \[y = \left( \sin x - \cos x \right)^{\sin x - \cos x} , \frac{\pi}{4} < x < \frac{3\pi}{4}, \text{ find} \frac{dy}{dx}\] ?
Find \[\frac{dy}{dx}\], when \[x = a t^2 \text{ and } y = 2\ at \] ?
Find \[\frac{dy}{dx}\] ,when \[x = \frac{e^t + e^{- t}}{2} \text{ and } y = \frac{e^t - e^{- t}}{2}\] ?
Differentiate \[\tan^{- 1} \left( \frac{x - 1}{x + 1} \right)\] with respect to \[\sin^{- 1} \left( 3x - 4 x^3 \right), \text { if }- \frac{1}{2} < x < \frac{1}{2}\] ?
If \[x = a \left( \theta + \sin \theta \right), y = a \left( 1 + \cos \theta \right), \text{ find} \frac{dy}{dx}\] ?
If \[y = \sec^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right)\] then write the value of \[\frac{dy}{dx} \] ?
If \[f\left( x \right) = \log \left\{ \frac{u \left( x \right)}{v \left( x \right)} \right\}, u \left( 1 \right) = v \left( 1 \right) \text{ and }u' \left( 1 \right) = v' \left( 1 \right) = 2\] , then find the value of `f' (1)` ?
If f (x) is an even function, then write whether `f' (x)` is even or odd ?
If \[\sqrt{1 - x^6} + \sqrt{1 - y^6} = a^3 \left( x^3 - y^3 \right)\] then \[\frac{dy}{dx}\] is equal to ____________ .
If y = x3 log x, prove that \[\frac{d^4 y}{d x^4} = \frac{6}{x}\] ?
If x = a (θ − sin θ), y = a (1 + cos θ) prove that, find \[\frac{d^2 y}{d x^2}\] ?
If x = sin t, y = sin pt, prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?
If \[y = e^{\tan^{- 1} x}\] prove that (1 + x2)y2 + (2x − 1)y1 = 0 ?
If x = a cos nt − b sin nt and \[\frac{d^2 x}{dt} = \lambda x\] then find the value of λ ?
\[\frac{d^{20}}{d x^{20}} \left( 2 \cos x \cos 3 x \right) =\]
If y = a sin mx + b cos mx, then \[\frac{d^2 y}{d x^2}\] is equal to
If y2 = ax2 + bx + c, then \[y^3 \frac{d^2 y}{d x^2}\] is
Differentiate `log [x+2+sqrt(x^2+4x+1)]`
Show that the height of a cylinder, which is open at the top, having a given surface area and greatest volume, is equal to the radius of its base.