Advertisements
Advertisements
Question
If \[\sqrt{1 - x^2} + \sqrt{1 - y^2} = a \left( x - y \right)\] , prove that \[\frac{dy}{dx} = \frac{\sqrt{1 - y^2}}{1 - x^2}\] ?
Solution
\[\text{ We have }, \sqrt{1 - x^2} + \sqrt{1 - y^2} = a\left( x - y \right)\]
\[\text{Let x } = \sin A , y = \sin B\]
\[ \Rightarrow \sqrt{1 - \sin^2 A} + \sqrt{1 - \sin^2 B} = a\left( \sin A - \sin B \right)\]
\[ \Rightarrow \cos A + \cos B = a\left( \sin A - \sin B \right) \]
\[ \Rightarrow a = \frac{\cos A + \cos B}{\sin A - \sin B}\]
\[ \Rightarrow a = \frac{2 \cos\frac{A + B}{2}\cos\frac{A - B}{2}}{2 \cos\frac{A + B}{2}\sin\frac{A - B}{2}} ...........[\because \sin A - \sin B = 2 \cos\frac{A + B}{2}\sin\frac{A - B}{2} \text{ and } \cos A + \cos B = 2 \cos\frac{A + B}{2}\cos\frac{A - B}{2}]\]
\[ \Rightarrow a = \cot\left( \frac{A - B}{2} \right)\]
\[ \Rightarrow \cot^{- 1} a = \frac{A - B}{2}\]
\[ \Rightarrow 2 \cot^{- 1} a = A - B\]
\[ \Rightarrow 2 \cot^{- 1} a = \sin^{- 1} x - \sin^{- 1} y ..........\left[ \because x = \sin A, y = \sin B \right]\]
Differentiating with respect to x, we get,
\[\frac{d}{dx}\left( 2co t^{- 1} a \right) = \frac{d}{dx}\left( \sin^{- 1} x \right) - \frac{d}{dx}\left( \sin^{- 1} y \right)\]
\[ \Rightarrow 0 = \frac{1}{\sqrt{1 - x^2}} - \frac{1}{\sqrt{1 - y^2}}\frac{d y}{d x}\]
\[ \Rightarrow \frac{1}{\sqrt{1 - y^2}}\frac{d y}{d x} = \frac{1}{\sqrt{1 - x^2}}\]
\[ \Rightarrow \frac{d y}{d x} = \frac{\sqrt{1 - y^2}}{\sqrt{1 - x^2}}\]
\[ \Rightarrow \frac{d y}{d x} = \sqrt{\frac{1 - y^2}{1 - x^2}}\]
APPEARS IN
RELATED QUESTIONS
If the function f(x)=2x3−9mx2+12m2x+1, where m>0 attains its maximum and minimum at p and q respectively such that p2=q, then find the value of m.
Differentiate the following function from first principles \[e^\sqrt{\cot x}\] .
Differentiate \[e^{\sin} \sqrt{x}\] ?
Differentiate etan x ?
Differentiate \[3^{x \log x}\] ?
Differentiate \[e^{3 x} \cos 2x\] ?
Differentiate \[e^\sqrt{\cot x}\] ?
Differentiate \[\log \sqrt{\frac{1 - \cos x}{1 + \cos x}}\] ?
Differentiate \[e^x \log \sin 2x\] ?
If \[y = \log \left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]prove that \[\frac{dy}{dx} = \frac{x - 1}{2x \left( x + 1 \right)}\] ?
If \[y = \frac{e^x - e^{- x}}{e^x + e^{- x}}\] .prove that \[\frac{dy}{dx} = 1 - y^2\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{1 + \sqrt{1 - x^2}} \right\}, - 1 < x < 1\] ?
Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] ?
Find \[\frac{dy}{dx}\] in the following case \[\left( x + y \right)^2 = 2axy\] ?
find \[\frac{dy}{dx}\] \[y = \frac{\left( x^2 - 1 \right)^3 \left( 2x - 1 \right)}{\sqrt{\left( x - 3 \right) \left( 4x - 1 \right)}}\] ?
Find \[\frac{dy}{dx}\] \[y = x^{\cos x} + \left( \sin x \right)^{\tan x}\] ?
Find \[\frac{dy}{dx}\] \[y = x^x + \left( \sin x \right)^x\] ?
If \[x^y \cdot y^x = 1\] , prove that \[\frac{dy}{dx} = - \frac{y \left( y + x \log y \right)}{x \left( y \log x + x \right)}\] ?
If \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] , prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?
Find the derivative of the function f (x) given by \[f\left( x \right) = \left( 1 + x \right) \left( 1 + x^2 \right) \left( 1 + x^4 \right) \left( 1 + x^8 \right)\] and hence find `f' (1)` ?
If \[\left( \cos x \right)^y = \left( \cos y \right)^x , \text{ find } \frac{dy}{dx}\] ?
If \[x = e^{\cos 2 t} \text{ and y }= e^{\sin 2 t} ,\] prove that \[\frac{dy}{dx} = - \frac{y \log x}{x \log y}\] ?
Differentiate\[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right)\] with respect to \[\sin^{-1} \left( \frac{2x}{1 + x^2} \right)\], If \[- 1 < x < 1, x \neq 0 .\] ?
If \[f\left( 1 \right) = 4, f'\left( 1 \right) = 2\] find the value of the derivative of \[\log \left( f\left( e^x \right) \right)\] w.r. to x at the point x = 0 ?
If \[f\left( 0 \right) = f\left( 1 \right) = 0, f'\left( 1 \right) = 2 \text { and y } = f \left( e^x \right) e^{f \left( x \right)}\] write the value of \[\frac{dy}{dx} \text{ at x } = 0\] ?
If \[y = \log_a x, \text{ find } \frac{dy}{dx} \] ?
Differential coefficient of sec(tan−1 x) is ______.
\[\frac{d}{dx} \left\{ \tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right) \right\} \text { equals }\] ______________ .
If \[f\left( x \right) = \sqrt{x^2 - 10x + 25}\] then the derivative of f (x) in the interval [0, 7] is ____________ .
If \[\sin y = x \cos \left( a + y \right), \text { then } \frac{dy}{dx}\] is equal to ______________ .
Find the second order derivatives of the following function e6x cos 3x ?
If y = 2 sin x + 3 cos x, show that \[\frac{d^2 y}{d x^2} + y = 0\] ?
If x = sin t, y = sin pt, prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?
If y = (sin−1 x)2, prove that (1 − x2)
\[\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?
If y = ae2x + be−x, show that, \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\] ?
If y = (cot−1 x)2, prove that y2(x2 + 1)2 + 2x (x2 + 1) y1 = 2 ?
\[\text { Find A and B so that y = A } \sin3x + B \cos3x \text { satisfies the equation }\]
\[\frac{d^2 y}{d x^2} + 4\frac{d y}{d x} + 3y = 10 \cos3x \] ?
If xy = e(x – y), then show that `dy/dx = (y(x-1))/(x(y+1)) .`