Advertisements
Advertisements
Question
If \[f\left( 0 \right) = f\left( 1 \right) = 0, f'\left( 1 \right) = 2 \text { and y } = f \left( e^x \right) e^{f \left( x \right)}\] write the value of \[\frac{dy}{dx} \text{ at x } = 0\] ?
Solution
\[\text{ We have,} f\left( 0 \right) = f\left( 1 \right) = 0 , f'\left( 1 \right) = 2\]
\[\text { and, } \]
\[y = f\left( e^x \right) e^{f\left( x \right)}\]
\[\Rightarrow \frac{dy}{dx} = \frac{d}{dx}\left[ f\left( e^x \right) \times e^{f\left( x \right)} \right]\]
\[ \Rightarrow \frac{dy}{dx} = f\left( e^x \right)\frac{d}{dx} e^{f\left( x \right)} + e^{f\left( x \right)} \frac{d}{dx}f\left( e^x \right) \left[ \text{Using product rule } \right]\]
\[ \Rightarrow \frac{dy}{dx} = f\left( e^x \right) \times e^{f\left( x \right)} \frac{d}{dx}f\left( x \right) + e^{f\left( x \right)} \times f'\left( e^x \right)\frac{d}{dx}\left( e^x \right)\]
\[ \Rightarrow \frac{dy}{dx} = f\left( e^x \right) \times e^{f\left( x \right)} \times f'\left( x \right) + e^{f\left( x \right)} \times f'\left( e^x \right) \times e^x \]
\[\text{ Putting x } = 0, \text{ we get }, \]
\[\frac{dy}{dx} = f\left( e^0 \right) \times e^{f\left( 0 \right)} \times f'\left( 0 \right) + e^{f\left( 0 \right)} \times f'\left( e^0 \right) \times e^0 \]
\[ \Rightarrow \frac{dy}{dx} = f\left( 1 \right) e^{f\left( 0 \right)} \times f'\left( 0 \right) + e^{f\left( 0 \right)} \times f'\left( 1 \right) \times 1\]
\[ \Rightarrow \frac{dy}{dx} = 0 \times e^0 \times f'\left( 0 \right) + e^0 \times 2 \times 1 .........\left[ \because f\left( x \right) = f\left( 1 \right) = 0 \text{ and }f'\left( 1 \right) = 2 \right]\]
\[ \Rightarrow \frac{dy}{dx} = 0 + 1 \times 2 \times 1\]
\[ \Rightarrow \frac{dy}{dx} = 2\]
APPEARS IN
RELATED QUESTIONS
Differentiate the following function from first principles \[e^\sqrt{\cot x}\] .
Differentiate sin (3x + 5) ?
Differentiate tan2 x ?
Differentiate \[\sqrt{\frac{1 + \sin x}{1 - \sin x}}\] ?
Differentiate \[\log \left( \frac{x^2 + x + 1}{x^2 - x + 1} \right)\] ?
Differentiate \[\left( \sin^{- 1} x^4 \right)^4\] ?
Differentiate \[3 e^{- 3x} \log \left( 1 + x \right)\] ?
Differentiate \[\log \sqrt{\frac{x - 1}{x + 1}}\] ?
Differentiate \[\sin^{- 1} \left( 1 - 2 x^2 \right), 0 < x < 1\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{\sqrt{1 + x} + \sqrt{1 - x}}{2} \right\}, 0 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{\sqrt{1 + a^2 x^2} - 1}{ax} \right), x \neq 0\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x^{1/3} + a^{1/3}}{1 - \left( a x \right)^{1/3}} \right\}\] ?
If \[y = \cos^{- 1} \left\{ \frac{2x - 3 \sqrt{1 - x^2}}{\sqrt{13}} \right\}, \text{ find } \frac{dy}{dx}\] ?
Differentiate \[\left( x \cos x \right)^x + \left( x \sin x \right)^{1/x}\] ?
If \[x = a \left( \frac{1 + t^2}{1 - t^2} \right) \text { and y } = \frac{2t}{1 - t^2}, \text { find } \frac{dy}{dx}\] ?
If \[x = \frac{1 + \log t}{t^2}, y = \frac{3 + 2\log t}{t}, \text { find } \frac{dy}{dx}\] ?
Differentiate \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\]\[x \in \left( 0, 1 \right)\] ?
If \[y = \sin^{- 1} \left( \sin x \right), - \frac{\pi}{2} \leq x \leq \frac{\pi}{2}\] ,Then, write the value of \[\frac{dy}{dx} \text{ for } x \in \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \] ?
If \[y = \log_a x, \text{ find } \frac{dy}{dx} \] ?
If \[f\left( x \right) = \left| x^2 - 9x + 20 \right|\] then `f' (x)` is equal to ____________ .
If \[f\left( x \right) = \left( \frac{x^l}{x^m} \right)^{l + m} \left( \frac{x^m}{x^n} \right)^{m + n} \left( \frac{x^n}{x^l} \right)^{n + 1}\] the f' (x) is equal to _____________ .
If \[\sin y = x \cos \left( a + y \right), \text { then } \frac{dy}{dx}\] is equal to ______________ .
If y = log (sin x), prove that \[\frac{d^3 y}{d x^3} = 2 \cos \ x \ {cosec}^3 x\] ?
If x = a (θ − sin θ), y = a (1 + cos θ) prove that, find \[\frac{d^2 y}{d x^2}\] ?
If y = (sin−1 x)2, prove that (1 − x2)
\[\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?
If log y = tan−1 x, show that (1 + x2)y2 + (2x − 1) y1 = 0 ?
If y = cot x show that \[\frac{d^2 y}{d x^2} + 2y\frac{dy}{dx} = 0\] ?
If y = ex (sin x + cos x) prove that \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\] ?
If x = a cos nt − b sin nt and \[\frac{d^2 x}{dt} = \lambda x\] then find the value of λ ?
If x = 2at, y = at2, where a is a constant, then find \[\frac{d^2 y}{d x^2} \text { at }x = \frac{1}{2}\] ?
If y = |x − x2|, then find \[\frac{d^2 y}{d x^2}\] ?
If x = f(t) and y = g(t), then write the value of \[\frac{d^2 y}{d x^2}\] ?
If y = a + bx2, a, b arbitrary constants, then
If x = 2 at, y = at2, where a is a constant, then \[\frac{d^2 y}{d x^2} \text { at x } = \frac{1}{2}\] is
If x = sin t and y = sin pt, prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] .
Find the minimum value of (ax + by), where xy = c2.
If `x=a (cos t +t sint )and y= a(sint-cos t )` Prove that `Sec^3 t/(at),0<t< pi/2`