English

Differentiate Sin − 1 √ 1 − X 2 with Respect to Cos − 1 X , If X ∈ ( 0 , 1 ) ? - Mathematics

Advertisements
Advertisements

Question

Differentiate  \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\]\[x \in \left( 0, 1 \right)\]  ?

 

Solution

\[\text { Let, u } = \sin^{- 1} \sqrt{1 - x^2}\]

\[\text { Put x } = \cos\theta\]

\[ \Rightarrow u = \sin^{- 1} \sqrt{1 - \cos^2 \theta}\]

\[ \Rightarrow u = \sin^{- 1} \left( \sin\theta \right) . . . \left( i \right)\]

\[\text { And,} v = \cos^{- 1} x . . . \left( ii \right)\]

\[\text { Now, x } \in \left( 0, 1 \right)\]

\[ \Rightarrow \cos\theta \in \left( 0, 1 \right)\]

\[ \Rightarrow \theta \in \left( 0, \frac{\pi}{2} \right)\]

\[\text { So, from equation } \left( i \right), \]

\[ u = \theta \left[ \text { Since }, \sin^{- 1} \left( \sin\theta \right) = \theta \text { if } \theta \in \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \right]\]

\[ \Rightarrow u = \cos^{- 1} x \left[ \text { Since }, \cos\theta = x \right]\]

Differentiating it with respect to x,

\[\frac{du}{dx} = \frac{- 1}{\sqrt{1 - x^2}} . . . \left( iii \right)\]
\[\text { from equation } \left( ii \right), \]
\[v = \cos^{- 1} x\]

Differentiating it with respect to x,

\[\frac{dv}{dx} = \frac{- 1}{\sqrt{1 - x^2}} . . . \left( iv \right)\]
\[\text { Dividing equation } \left( iii \right) by \left( iv \right), \]
\[\frac{\frac{du}{dx}}{\frac{dv}{dx}} = \frac{- 1}{\sqrt{1 - x^2}} \times \frac{\sqrt{1 - x^2}}{- 1}\]
\[ \therefore \frac{du}{dx} = 1\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Differentiation - Exercise 11.08 [Page 112]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 11 Differentiation
Exercise 11.08 | Q 4.1 | Page 112

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Differentiate \[\log \left( \tan^{- 1} x \right)\]? 


Differentiate \[\frac{3 x^2 \sin x}{\sqrt{7 - x^2}}\] ?


Differentiate \[\frac{x^2 + 2}{\sqrt{\cos x}}\] ?


If \[y = e^x \cos x\] ,prove that \[\frac{dy}{dx} = \sqrt{2} e^x \cdot \cos \left( x + \frac{\pi}{4} \right)\] ?


Differentiate \[\tan^{- 1} \left( \frac{2 a^x}{1 - a^{2x}} \right), a > 1, - \infty < x < 0\] ?


Differentiate 

\[\tan^{- 1} \left( \frac{\cos x + \sin x}{\cos x - \sin x} \right), \frac{\pi}{4} < x < \frac{\pi}{4}\] ?


If \[y = \sin \left[ 2 \tan^{- 1} \left\{ \frac{\sqrt{1 - x}}{1 + x} \right\} \right], \text{ find } \frac{dy}{dx}\] ?


If \[\sqrt{1 - x^2} + \sqrt{1 - y^2} = a \left( x - y \right)\] , prove that \[\frac{dy}{dx} = \frac{\sqrt{1 - y^2}}{1 - x^2}\] ?


If \[\sqrt{y + x} + \sqrt{y - x} = c, \text {show that } \frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\] ?


Differentiate \[\left( 1 + \cos x \right)^x\] ?


Differentiate \[\left( \sin^{- 1} x \right)^x\] ?


Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\log x} + \cos^2 \left( \frac{\pi}{4} \right)\] ?


Find \[\frac{dy}{dx}\] \[y = x^{\log x }+ \left( \log x \right)^x\] ?


If \[x^{13} y^7 = \left( x + y \right)^{20}\] prove that \[\frac{dy}{dx} = \frac{y}{x}\] ?


If \[e^{x + y} - x = 0\] ,prove that \[\frac{dy}{dx} = \frac{1 - x}{x}\] ?


If  \[y = \sqrt{\log x + \sqrt{\log x + \sqrt{\log x + ... to \infty}}}\], prove that \[\left( 2 y - 1 \right) \frac{dy}{dx} = \frac{1}{x}\] ?

 


If \[x = a \left( \theta - \sin \theta \right) and, y = a \left( 1 + \cos \theta \right), \text { find } \frac{dy}{dx} \text{ at }\theta = \frac{\pi}{3} \] ?

 


Differentiate (log x)x with respect to log x ?


Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( \frac{1}{2 \sqrt{2}}, \frac{1}{2} \right)\] ?


Differentiate \[\tan^{- 1} \left( \frac{2x}{1 - x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text {  if }0 < x < 1\] ?


Differentiate \[\tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right)\] with  respect to \[\sec^{- 1} x\] ?


Differentiate \[\cos^{- 1} \left( 4 x^3 - 3x \right)\] with respect to \[\tan^{- 1} \left( \frac{\sqrt{1 - x^2}}{x} \right), \text{ if }\frac{1}{2} < x < 1\] ? 


If \[\pi \leq x \leq 2\pi \text { and y } = \cos^{- 1} \left( \cos x \right), \text { find } \frac{dy}{dx}\] ?


If \[y = x \left| x \right|\] , find \[\frac{dy}{dx} \text{ for } x < 0\] ?


If \[- \frac{\pi}{2} < x < 0 \text{ and y } = \tan^{- 1} \sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}, \text{ find } \frac{dy}{dx}\] ?


The derivative of \[\sec^{- 1} \left( \frac{1}{2 x^2 + 1} \right) \text { w . r . t }. \sqrt{1 + 3 x} \text { at } x = - 1/3\]


If \[3 \sin \left( xy \right) + 4 \cos \left( xy \right) = 5, \text { then } \frac{dy}{dx} =\] _____________ .


If \[\sin^{- 1} \left( \frac{x^2 - y^2}{x^2 + y^2} \right) = \text { log a then } \frac{dy}{dx}\] is equal to _____________ .


If y = ex cos x, show that \[\frac{d^2 y}{d x^2} = 2 e^{- x} \sin x\] ?


If y = ex cos x, prove that \[\frac{d^2 y}{d x^2} = 2 e^x \cos \left( x + \frac{\pi}{2} \right)\] ?


If x = a (θ + sin θ), y = a (1 + cos θ), prove that \[\frac{d^2 y}{d x^2} = - \frac{a}{y^2}\] ?


If x = 2 cos t − cos 2ty = 2 sin t − sin 2t, find \[\frac{d^2 y}{d x^2}\text{ at } t = \frac{\pi}{2}\] ?


\[ \text { If x } = a \sin t \text { and y } = a\left( \cos t + \log \tan\frac{t}{2} \right), \text { find } \frac{d^2 y}{d x^2} \] ?


\[\frac{d^{20}}{d x^{20}} \left( 2 \cos x \cos 3 x \right) =\]

 


If y = (sin−1 x)2, then (1 − x2)y2 is equal to

 


If x = f(t) cos t − f' (t) sin t and y = f(t) sin t + f'(t) cos t, then\[\left( \frac{dx}{dt} \right)^2 + \left( \frac{dy}{dt} \right)^2 =\]

 


If y2 = ax2 + bx + c, then \[y^3 \frac{d^2 y}{d x^2}\] is 

 


Differentiate `log [x+2+sqrt(x^2+4x+1)]`


Show that the height of a cylinder, which is open at the top, having a given surface area and greatest volume, is equal to the radius of its base. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×