Advertisements
Advertisements
Question
Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( \frac{1}{2 \sqrt{2}}, \frac{1}{2} \right)\] ?
Solution
\[\text { Let, u } = \sin^{- 1} \left( 4x\sqrt{1 - 4 x^2} \right)\]
\[ \text { put }2x = \cos\theta\]
\[ u = \sin^{- 1} \left( 2 \times \cos\theta\sqrt{1 - \cos^2 \theta} \right)\]
\[ \Rightarrow u = \sin^{- 1} \left( 2\cos\theta \sin\theta \right) \]
\[ \Rightarrow u = \sin^{- 1} \left( \sin 2\theta \right) . . . \left( i \right)\]
\[\text { Let, v }= \sqrt{1 - 4 x^2} . . . \left( ii \right)\]
\[\text { Here }, \]
\[ x \in \left( \frac{1}{2\sqrt{2}}, \frac{1}{2} \right)\]
\[ \Rightarrow 2x \in \left( \frac{1}{\sqrt{2}}, 1 \right)\]
\[ \Rightarrow \cos\theta \in \left( \frac{1}{\sqrt{2}}, 1 \right)\]
\[ \Rightarrow \theta \in \left( 0, \frac{\pi}{4} \right)\]
\[\text { So, from equation } \left( i \right), \]
\[ u = 2\theta ..........\left[ \text {Since }, \sin^{- 1} \left( sin\theta \right) = \theta , \text{ if }\theta \in \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \right]\]
\[ \Rightarrow u = 2 \cos^{- 1} \left( 2x \right) ........\left[ \text { Since, } 2x = \cos\theta \right]\]
Differentiate it with respect to x,
\[\frac{du}{dx} = 2\left( \frac{- 1}{\sqrt{1 - \left( 2x \right)^2}} \right)\frac{d}{dx}\left( 2x \right)\]
\[\frac{du}{dx} = \frac{- 2}{\sqrt{1 - 4 x^2}}\left( 2 \right)\]
\[\frac{du}{dx} = \frac{- 4}{\sqrt{1 - 4 x^2}} . . . \left( iii \right)\]
\[\text { Differentiating equation } \left( ii \right) \text { with respect to x,} \]
\[\frac{dv}{dx} = \frac{1}{2\sqrt{1 - 4 x^2}}\frac{d}{dx}\left( 1 - 4 x^2 \right)\]
\[ \Rightarrow \frac{dv}{dx} = \frac{1}{2\sqrt{1 - 4 x^2}}\left( - 8x \right)\]
\[ \Rightarrow \frac{dv}{dx} = \frac{- 4x}{\sqrt{1 - 4 x^2}} . . . \left( iv \right)\]
\[\text { Dividing equation } \left( iii \right) \text { by } \left( iv \right)\]
\[\frac{\frac{du}{dx}}{\frac{dv}{dx}} = \frac{- 4}{\sqrt{1 - 4 x^2}} \times \frac{\sqrt{1 - 4 x^2}}{- 4x}\]
\[ \therefore \frac{du}{dv} = \frac{1}{x}\]
APPEARS IN
RELATED QUESTIONS
Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is `cos^(-1)(1/sqrt3)`
Differentiate the following functions from first principles sin−1 (2x + 3) ?
Differentiate sin2 (2x + 1) ?
Differentiate tan 5x° ?
Differentiate logx 3 ?
Differentiate \[\sqrt{\frac{1 + x}{1 - x}}\] ?
Differentiate \[e^{3 x} \cos 2x\] ?
Differentiate \[\tan^{- 1} \left( e^x \right)\] ?
Differentiate \[\sqrt{\tan^{- 1} \left( \frac{x}{2} \right)}\] ?
If \[y = \frac{x}{x + 2}\] , prove tha \[x\frac{dy}{dx} = \left( 1 - y \right) y\] ?
Differentiate \[\sin^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{\sqrt{1 + a^2 x^2} - 1}{ax} \right), x \neq 0\] ?
Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] ?
If \[y = \sin \left[ 2 \tan^{- 1} \left\{ \frac{\sqrt{1 - x}}{1 + x} \right\} \right], \text{ find } \frac{dy}{dx}\] ?
Find \[\frac{dy}{dx}\] in the following case \[x^{2/3} + y^{2/3} = a^{2/3}\] ?
Find \[\frac{dy}{dx}\] in the following case \[x^5 + y^5 = 5 xy\] ?
Differentiate\[\left( x + \frac{1}{x} \right)^x + x^\left( 1 + \frac{1}{x} \right)\] ?
Find \[\frac{dy}{dx}\] \[y = e^{3x} \sin 4x \cdot 2^x\] ?
Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\log x} + \cos^2 \left( \frac{\pi}{4} \right)\] ?
If \[x^{16} y^9 = \left( x^2 + y \right)^{17}\] ,prove that \[x\frac{dy}{dx} = 2 y\] ?
If \[x^x + y^x = 1\], prove that \[\frac{dy}{dx} = - \left\{ \frac{x^x \left( 1 + \log x \right) + y^x \cdot \log y}{x \cdot y^\left( x - 1 \right)} \right\}\] ?
If \[e^x + e^y = e^{x + y}\] , prove that
\[\frac{dy}{dx} + e^{y - x} = 0\] ?
If \[y = \sqrt{\log x + \sqrt{\log x + \sqrt{\log x + ... to \infty}}}\], prove that \[\left( 2 y - 1 \right) \frac{dy}{dx} = \frac{1}{x}\] ?
If \[y = \sqrt{\tan x + \sqrt{\tan x + \sqrt{\tan x + . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sec^2 x}{2 y - 1}\] ?
Find \[\frac{dy}{dx}\] , when \[x = \frac{3 at}{1 + t^2}, \text{ and } y = \frac{3 a t^2}{1 + t^2}\] ?
Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( - \frac{1}{2}, - \frac{1}{2 \sqrt{2}} \right)\] ?
Differentiate\[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right)\] with respect to \[\sin^{-1} \left( \frac{2x}{1 + x^2} \right)\], If \[- 1 < x < 1, x \neq 0 .\] ?
If f (x) = loge (loge x), then write the value of `f' (e)` ?
If \[y = \sin^{- 1} x + \cos^{- 1} x\] ,find \[\frac{dy}{dx}\] ?
If \[y = \log_a x, \text{ find } \frac{dy}{dx} \] ?
If \[\left| x \right| < 1 \text{ and y} = 1 + x + x^2 + . . \] to ∞, then find the value of \[\frac{dy}{dx}\] ?
If \[x^y = e^{x - y} ,\text{ then } \frac{dy}{dx}\] is __________ .
If \[f\left( x \right) = \left| x - 3 \right| \text { and }g\left( x \right) = fof \left( x \right)\] is equal to __________ .
If \[y = \sqrt{\sin x + y}, \text { then }\frac{dy}{dx} \text { equals }\] ______________ .
If x = a (θ − sin θ), y = a (1 + cos θ) prove that, find \[\frac{d^2 y}{d x^2}\] ?
If y = cot x show that \[\frac{d^2 y}{d x^2} + 2y\frac{dy}{dx} = 0\] ?
\[\text { If x } = a \sin t - b \cos t, y = a \cos t + b \sin t, \text { prove that } \frac{d^2 y}{d x^2} = - \frac{x^2 + y^2}{y^3} \] ?
Differentiate \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right) w . r . t . \sin^{- 1} \frac{2x}{1 + x^2},\]tan-11+x2-1x w.r.t. sin-12x1+x2, if x ∈ (–1, 1) .