English

Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is cos^(-1)(1/sqrt3) - Mathematics

Advertisements
Advertisements

Question

Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is `cos^(-1)(1/sqrt3)`

Solution

Let us consider the following variables:
h = height of the cone         
l = slant height of the cone (given)         
r = radius of the base of the cone         
α = semi vertical angle of the cone

Let us assume that V' is the volume of the cone which has to be maximised.

We know that

`V' = 1/3πr^2h                           ...(1)`


From the figure, we have:

`l^2=r^2+h^2⇒l^2−h^2=r^2`

On substituting the value of r2 in equation (1), we get:

`V' = 1/3π(l^2−h^2)h=1/3π(l^2h−h^3)   `


On differentiating with respect to h, we get:

`dV'/dh=1/3π(l^2−3h^2)                  ...(2)`

For maximum volume of V, let us put `(dV')/(dh)=0.`
So, from equation (2), we have:

`1/3π(l^2−3h^2)=0⇒h=l/sqrt3      (∵ h,l >0)`

Again, differentiating equation (2) with respect to h, we get:

`(d^2V'/dh^2)=1/3π(−6h)=−2πh`

`∴ ((d^2V')/(dh^2))_(h=l/sqrt3)=−2πl/sqrt3<0`

Thus, the volume of the cone is maximum at

`h=l/sqrt3`


From the figure, we have:

`cosα =h/l⇒cosα =l/lsqrt3=1/sqrt3`

`⇒α=cos^(−1)(1/sqrt3)`


∴ The semi-vertical angle is

`cos^(−1)(1/sqrt3).  `

shaalaa.com
  Is there an error in this question or solution?
2013-2014 (March) Delhi Set 1

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Differentiate logx 3 ?


Differentiate \[\sqrt{\frac{1 + \sin x}{1 - \sin x}}\] ?


Differentiate \[\log \left( x + \sqrt{x^2 + 1} \right)\] ?


Differentiate \[\frac{e^x \log x}{x^2}\] ? 


Differentiate  \[e^x \log \sin 2x\] ?


Differentiate \[3 e^{- 3x} \log \left( 1 + x \right)\] ?


\[\log\left\{ \cot\left( \frac{\pi}{4} + \frac{x}{2} \right) \right\}\] ?


If \[y = x \sin^{- 1} x + \sqrt{1 - x^2}\] ,prove that \[\frac{dy}{dx} = \sin^{- 1} x\] ?


Differentiate \[\tan^{- 1} \left\{ \frac{x}{1 + \sqrt{1 - x^2}} \right\}, - 1 < x < 1\] ?


If  \[y = se c^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right), x > 0 . \text{ Find} \frac{dy}{dx}\] ?

 


Find  \[\frac{dy}{dx}\] in the following case \[\tan^{- 1} \left( x^2 + y^2 \right) = a\] ?

 


If \[\sqrt{1 - x^2} + \sqrt{1 - y^2} = a \left( x - y \right)\] , prove that \[\frac{dy}{dx} = \frac{\sqrt{1 - y^2}}{1 - x^2}\] ?


If \[xy \log \left( x + y \right) = 1\] ,Prove that \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?


If  \[\tan \left( x + y \right) + \tan \left( x - y \right) = 1, \text{ find}  \frac{dy}{dx}\] ?


Differentiate \[x^{\cos^{- 1} x}\] ?


Differentiate \[{10}^\left( {10}^x \right)\] ?


Differentiate \[x^\left( \sin x - \cos x \right) + \frac{x^2 - 1}{x^2 + 1}\] ?


\[\text{ If }y = x^{\tan x} + \sqrt{\frac{x^2 + 1}{2}}, \text{ find} \frac{dy}{dx}\] ?

 


If  \[y = \sqrt{\log x + \sqrt{\log x + \sqrt{\log x + ... to \infty}}}\], prove that \[\left( 2 y - 1 \right) \frac{dy}{dx} = \frac{1}{x}\] ?

 


Find \[\frac{dy}{dx}\], When \[x = a \left( \theta + \sin \theta \right) \text{ and } y = a \left( 1 - \cos \theta \right)\] ?


Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right), \text { if }- \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?


If \[f'\left( 1 \right) = 2 \text { and y } = f \left( \log_e x \right), \text { find} \frac{dy}{dx} \text { at }x = e\] ?


If \[\pi \leq x \leq 2\pi \text { and y } = \cos^{- 1} \left( \cos x \right), \text { find } \frac{dy}{dx}\] ?


If \[x = a \cos^3 \theta, y = a \sin^3 \theta, \text { then } \sqrt{1 + \left( \frac{dy}{dx} \right)^2} =\] ____________ .


Find the second order derivatives of the following function  log (sin x) ?


Find the second order derivatives of the following function  log (log x)  ?


If y = x + tan x, show that  \[\cos^2 x\frac{d^2 y}{d x^2} - 2y + 2x = 0\] ?


If y = ae2x + be−x, show that, \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\] ?


If y = |x − x2|, then find \[\frac{d^2 y}{d x^2}\] ?


If \[\frac{d}{dx}\left[ x^n - a_1 x^{n - 1} + a_2 x^{n - 2} + . . . + \left( - 1 \right)^n a_n \right] e^x = x^n e^x\] then the value of ar, 0 < r ≤ n, is equal to 

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×