English

​Differentiate X ( Sin X − Cos X ) + X 2 − 1 X 2 + 1 ? - Mathematics

Advertisements
Advertisements

Question

Differentiate \[x^\left( \sin x - \cos x \right) + \frac{x^2 - 1}{x^2 + 1}\] ?

Sum

Solution

\[\text{Let y } = x^\left( \sin x - \cos x \right) + \left( \frac{x^2 - 1}{x^2 + 1} \right)\]

\[ \Rightarrow y = e^{\log x^\left( \sin x - \cos x \right)} + \left( \frac{x^2 - 1}{x^2 + 1} \right)\]

\[ \Rightarrow y = e^{ \left( \sin x - \cos x \right)\log x } + \left( \frac{x^2 - 1}{x^2 + 1} \right)\]

Differentiate it with respect to x using chain rule,

\[\frac{dy}{dx} = \frac{d}{dx}\left[ e^{\left( \sin x - \cos x \right)\log x }\right] + \frac{d}{dx}\left[ \frac{x^2 - 1}{x^2 + 1} \right]\] 
\[             =  e^{\left( \sin x - \cos x \right)\log x }\frac{d}{dx}\left\{ \left( \sin x - \cos x \right)\log x \right\} + \left[ \frac{\left( x^2 + 1 \right)\frac{d}{dx}\left( x^2 - 1 \right) - \left( x^2 - 1 \right)\frac{d}{dx}\left( x^2 + 1 \right)}{\left( x^2 + 1 \right)^2} \right]\] 
\[             =  e^{ \log x^\left( \sin x - \cos x  \right) } \left[ \left( \sin x - \cos x \right)\frac{d}{dx}\left( \log x \right) + \left( \log x \right)\frac{d}{dx}\left( \sin x - \cos x \right) \right] + \left[ \frac{\left( x^2 + 1 \right)\left( 2x \right) - \left( x^2 - 1 \right)\left( 2x \right)}{\left( x^2 + 1 \right)^2} \right]\] 
\[             =  x^\left( \sin x - \cos x \right) \left[ \left( \sin x - \cos x \right)\left( \frac{1}{x} \right) + \log x\left( \sin x + \cos x \right) \right] + \left[ \frac{2 x^3 + 2x - 2 x^3 + 2x}{\left( x^2 + 1 \right)^2} \right]\] 
\[             =  x^\left( \sin x - \cos x \right) \left[ \frac{\left( \sin x - \cos x \right)}{x} + \left( \sin x + \cos x \right)\log x \right] + \frac{4x}{\left( x^2 + 1 \right)^2}\]
shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Differentiation - Exercise 11.05 [Page 88]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 11 Differentiation
Exercise 11.05 | Q 18.2 | Page 88

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Differentiate the following functions from first principles e−x.


Differentiate the following functions from first principles log cosec x ?


Differentiate sin (log x) ?


Differentiate (log sin x)?


Differentiate \[\sqrt{\frac{1 + x}{1 - x}}\] ?


Differentiate \[\tan \left( e^{\sin x }\right)\] ?


Differentiate \[\log \left( x + \sqrt{x^2 + 1} \right)\] ?


Differentiate \[x \sin 2x + 5^x + k^k + \left( \tan^2 x \right)^3\] ?


Differentiate \[\log \sqrt{\frac{x - 1}{x + 1}}\] ?


 If \[y = \sqrt{x + 1} + \sqrt{x - 1}\] , prove that \[\sqrt{x^2 - 1}\frac{dy}{dx} = \frac{1}{2}y\] ?


Differentiate  \[\sin^{- 1} \left\{ \sqrt{\frac{1 - x}{2}} \right\}, 0 < x < 1\]  ?


Differentiate \[\cos^{- 1} \left\{ \frac{x}{\sqrt{x^2 + a^2}} \right\}\] ?


Differentiate \[\cos^{- 1} \left\{ \frac{\cos x + \sin x}{\sqrt{2}} \right\}, - \frac{\pi}{4} < x < \frac{\pi}{4}\] ?


Differentiate \[\cos^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?


Differentiate \[\sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), x \in R\] ?


If  \[y = se c^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right), x > 0 . \text{ Find} \frac{dy}{dx}\] ?

 


If \[y = \tan^{- 1} \left( \frac{\sqrt{1 + x} - \sqrt{1 - x}}{\sqrt{1 + x} + \sqrt{1 - x}} \right), \text{find } \frac{dy}{dx}\] ?


Differentiate \[\sin^{- 1} \left\{ \frac{2^{x + 1} \cdot 3^x}{1 + \left( 36 \right)^x} \right\}\]  with respect to x ?


If \[y \sqrt{1 - x^2} + x \sqrt{1 - y^2} = 1\] ,prove that \[\frac{dy}{dx} = - \sqrt{\frac{1 - y^2}{1 - x^2}}\] ?


If \[\sec \left( \frac{x + y}{x - y} \right) = a\] Prove that  \[\frac{dy}{dx} = \frac{y}{x}\] ?


If \[y = x \sin y\] , Prove that \[\frac{dy}{dx} = \frac{\sin y}{\left( 1 - x \cos y \right)}\] ?


Differentiate \[\left( \sin x \right)^{\cos x}\] ?


Differentiate  \[\left( \sin x \right)^{\log x}\] ?


If \[x^y \cdot y^x = 1\] , prove that \[\frac{dy}{dx} = - \frac{y \left( y + x \log y \right)}{x \left( y \log x + x \right)}\] ?


If  \[y = \sqrt{\tan x + \sqrt{\tan x + \sqrt{\tan x + . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sec^2 x}{2 y - 1}\] ?

 


Find \[\frac{dy}{dx}\], When \[x = a \left( \theta + \sin \theta \right) \text{ and } y = a \left( 1 - \cos \theta \right)\] ?


Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { if } 0 < x < 1\] ?


If \[y = \log \left| 3x \right|, x \neq 0, \text{ find } \frac{dy}{dx} \] ? 


If f (x) is an odd function, then write whether `f' (x)` is even or odd ?


The derivative of \[\sec^{- 1} \left( \frac{1}{2 x^2 + 1} \right) \text { w . r . t }. \sqrt{1 + 3 x} \text { at } x = - 1/3\]


\[\frac{d}{dx} \left\{ \tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right) \right\} \text { equals }\] ______________ .


Find the second order derivatives of the following function  log (log x)  ?


If \[y = e^{2x} \left( ax + b \right)\]  show that  \[y_2 - 4 y_1 + 4y = 0\] ?


If x = 2 cos t − cos 2ty = 2 sin t − sin 2t, find \[\frac{d^2 y}{d x^2}\text{ at } t = \frac{\pi}{2}\] ?


\[\text { If x } = a \sin t - b \cos t, y = a \cos t + b \sin t, \text { prove that } \frac{d^2 y}{d x^2} = - \frac{x^2 + y^2}{y^3} \] ?


If y = (sin−1 x)2, then (1 − x2)y2 is equal to

 


Differentiate `log [x+2+sqrt(x^2+4x+1)]`


Range of 'a' for which x3 – 12x + [a] = 0 has exactly one real root is (–∞, p) ∪ [q, ∞), then ||p| – |q|| is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×