Advertisements
Advertisements
Question
Differentiate \[\cos^{- 1} \left\{ \frac{x}{\sqrt{x^2 + a^2}} \right\}\] ?
Solution
\[\text{ Let, y } = \cos^{- 1} \left\{ \frac{x}{\sqrt{x^2 + a^2}} \right\}\]
\[\text{ Put x } = \text{ a cot}\theta\]
\[ \Rightarrow y = \cos^{- 1} \left\{ \frac{a cot\theta}{\sqrt{a^2 co t^2 \theta + a^2}} \right\}\]
\[ \Rightarrow y = \cos^{- 1} \left\{ \frac{a cot\theta}{\sqrt{a^2 \left( co t^2 \theta + 1 \right)}} \right\}\]
\[ \Rightarrow y = \sin^{- 1} \left( \frac{a cot\theta}{\text {a cosec }\theta} \right)\]
\[ \Rightarrow y = \cos^{- 1} \left( \frac{\frac{\cos\theta}{\sin\theta}}{\frac{1}{\sin\theta}} \right)\]
\[ \Rightarrow y = \cos^{- 1} \left( \cos\theta \right) \]
\[ \Rightarrow y = \theta\]
\[ \Rightarrow y = co t^{- 1} \left( \frac{x}{a} \right) \left[ \text{since, x = a cot}\theta \right] \]
\[\text{ Differentiating it with respect to x using chain rule }, \]
\[\frac{d y}{d x} = \frac{- 1}{1 + \left( \frac{x}{a} \right)^2}\frac{d}{dx}\left( \frac{x}{a} \right)\]
\[ \Rightarrow \frac{d y}{d x} = \frac{- a^2}{a^2 + x^2} \times \left( \frac{1}{a} \right)\]
\[ \therefore \frac{d y}{d x} = \frac{- a}{a^2 + x^2}\]
APPEARS IN
RELATED QUESTIONS
Differentiate the following functions from first principles e3x.
Differentiate the following functions from first principles \[e^\sqrt{2x}\].
Differentiate (log sin x)2 ?
Differentiate \[\tan \left( e^{\sin x }\right)\] ?
Differentiate \[\frac{e^{2x} + e^{- 2x}}{e^{2x} - e^{- 2x}}\] ?
Differentiate \[e^{\tan^{- 1}} \sqrt{x}\] ?
Differentiate \[\left( \sin^{- 1} x^4 \right)^4\] ?
Differentiate \[\frac{x^2 + 2}{\sqrt{\cos x}}\] ?
If \[y = \sqrt{x^2 + a^2}\] prove that \[y\frac{dy}{dx} - x = 0\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{1 + \sqrt{1 - x^2}} \right\}, - 1 < x < 1\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{2^{x + 1} \cdot 3^x}{1 + \left( 36 \right)^x} \right\}\] with respect to x ?
Find \[\frac{dy}{dx}\] in the following case \[x^5 + y^5 = 5 xy\] ?
If \[\tan^{- 1} \left( \frac{x^2 - y^2}{x^2 + y^2} \right) = a\] Prove that \[\frac{dy}{dx} = \frac{x}{y}\frac{\left( 1 - \tan a \right)}{\left( 1 + \tan a \right)}\] ?
If \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?
If \[\tan \left( x + y \right) + \tan \left( x - y \right) = 1, \text{ find} \frac{dy}{dx}\] ?
If \[\sqrt{y + x} + \sqrt{y - x} = c, \text {show that } \frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\] ?
Differentiate \[\left( \log x \right)^{ \log x }\] ?
Differentiate \[e^{\sin x }+ \left( \tan x \right)^x\] ?
If \[e^x + e^y = e^{x + y}\] , prove that
\[\frac{dy}{dx} + e^{y - x} = 0\] ?
If \[y = \left( \sin x - \cos x \right)^{\sin x - \cos x} , \frac{\pi}{4} < x < \frac{3\pi}{4}, \text{ find} \frac{dy}{dx}\] ?
If \[\frac{dy}{dx}\] when \[x = a \cos \theta \text{ and } y = b \sin \theta\] ?
If \[x = 2 \cos \theta - \cos 2 \theta \text{ and y} = 2 \sin \theta - \sin 2 \theta\], prove that \[\frac{dy}{dx} = \tan \left( \frac{3 \theta}{2} \right)\] ?
If \[x = \frac{\sin^3 t}{\sqrt{\cos 2 t}}, y = \frac{\cos^3 t}{\sqrt{\cos t 2 t}}\] , find\[\frac{dy}{dx}\] ?
If \[x = a \left( \frac{1 + t^2}{1 - t^2} \right) \text { and y } = \frac{2t}{1 - t^2}, \text { find } \frac{dy}{dx}\] ?
If \[x = a\sin2t\left( 1 + \cos2t \right) \text { and y } = b\cos2t\left( 1 - \cos2t \right)\] , show that at \[t = \frac{\pi}{4}, \frac{dy}{dx} = \frac{b}{a}\] ?
If \[x = a \left( \theta + \sin \theta \right), y = a \left( 1 + \cos \theta \right), \text{ find} \frac{dy}{dx}\] ?
If f (x) is an even function, then write whether `f' (x)` is even or odd ?
Given \[f\left( x \right) = 4 x^8 , \text { then }\] _________________ .
If \[x = a \cos^3 \theta, y = a \sin^3 \theta, \text { then } \sqrt{1 + \left( \frac{dy}{dx} \right)^2} =\] ____________ .
If \[y = \sqrt{\sin x + y},\text { then } \frac{dy}{dx} =\] __________ .
If \[f\left( x \right) = \left( \frac{x^l}{x^m} \right)^{l + m} \left( \frac{x^m}{x^n} \right)^{m + n} \left( \frac{x^n}{x^l} \right)^{n + 1}\] the f' (x) is equal to _____________ .
Find the second order derivatives of the following function sin (log x) ?
Find the second order derivatives of the following function x3 log x ?
If y = (tan−1 x)2, then prove that (1 + x2)2 y2 + 2x(1 + x2)y1 = 2 ?
If x = 2 cos t − cos 2t, y = 2 sin t − sin 2t, find \[\frac{d^2 y}{d x^2}\text{ at } t = \frac{\pi}{2}\] ?
\[\text { If }y = A e^{- kt} \cos\left( pt + c \right), \text { prove that } \frac{d^2 y}{d t^2} + 2k\frac{d y}{d t} + n^2 y = 0, \text { where } n^2 = p^2 + k^2 \] ?
If x = t2 and y = t3, find \[\frac{d^2 y}{d x^2}\] ?
If x = f(t) and y = g(t), then write the value of \[\frac{d^2 y}{d x^2}\] ?
Find the height of a cylinder, which is open at the top, having a given surface area, greatest volume, and radius r.