Advertisements
Advertisements
Question
If x = 2 cos t − cos 2t, y = 2 sin t − sin 2t, find \[\frac{d^2 y}{d x^2}\text{ at } t = \frac{\pi}{2}\] ?
Solution
Here,
\[x = 2 \cos t - \cos2t \text { and }y = 2 \sin t - \sin2t\]
\[\text{ Differentiating w . r . t . t, we get} \]
\[\frac{d x}{d t} = - 2 \sin t + 2 \sin2t \text { and }\frac{d y}{d t} = 2 \cos t - 2 \cos2t\]
\[ \therefore \frac{d y}{d x} = \frac{2 \cos t - 2 \cos2t}{- 2 \sin t + 2 \sin2t} = \frac{\cos t - \cos2t}{- \sin t + \sin2t}\]
\[\text { Differentiating w . r . t . x, we get}\]
\[\frac{d^2 y}{d x^2} = \frac{\left( - \sin t + 2 \sin2t \right)\left( - \sin t + \sin2t \right) - \left( \cos t - \cos2t \right)\left( - \cos t + 2 \cos2t \right)}{\left( - \sin t + \sin2t \right)^2}\frac{dt}{dx}\]
\[ = \frac{\left( - \sin t + 2 \sin2t \right)\left( - \sin t + \sin2t \right) - \left( \cos t - \cos2t \right)\left( - \cos t + 2 \cos2t \right)}{\left( - \sin t + \sin2t \right)^2 \left( - 2 \sin t + 2 \sin2t \right)}\]
\[\text { At } t = \frac{\pi}{2}: \]
\[\frac{d^2 y}{d x^2} = \frac{\left( - 1 + 0 \right)\left( - 1 + 0 \right) - \left( 0 + 1 \right)\left( - 0 - 2 \right)}{\left( - 1 + 0 \right)^2 \left( - 2 + 0 \right)} = \frac{1 + 2}{- 2} = \frac{- 3}{2}\]
APPEARS IN
RELATED QUESTIONS
Differentiate the following functions from first principles e3x.
Differentiate the following functions from first principles \[e^\sqrt{2x}\].
Differentiate sin (log x) ?
Differentiate etan x ?
Differentiate \[e^x \log \sin 2x\] ?
Differentiate \[e^{ax} \sec x \tan 2x\] ?
Differentiate \[\log \sqrt{\frac{x - 1}{x + 1}}\] ?
Differentiate \[\sin^{- 1} \left( 2 x^2 - 1 \right), 0 < x < 1\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{a + \sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?
Differentiate \[\tan^{- 1} \left( \frac{4x}{1 - 4 x^2} \right), - \frac{1}{2} < x < \frac{1}{2}\] ?
Differentiate \[\tan^{- 1} \left( \frac{a + bx}{b - ax} \right)\] ?
Find \[\frac{dy}{dx}\] in the following case \[e^{x - y} = \log \left( \frac{x}{y} \right)\] ?
If \[\sqrt{1 - x^2} + \sqrt{1 - y^2} = a \left( x - y \right)\] , prove that \[\frac{dy}{dx} = \frac{\sqrt{1 - y^2}}{1 - x^2}\] ?
If \[\tan \left( x + y \right) + \tan \left( x - y \right) = 1, \text{ find} \frac{dy}{dx}\] ?
If \[e^x + e^y = e^{x + y} , \text{ prove that } \frac{dy}{dx} = - \frac{e^x \left( e^y - 1 \right)}{e^y \left( e^x - 1 \right)} or \frac{dy}{dx} + e^{y - x} = 0\] ?
If \[y = \left\{ \log_{\cos x} \sin x \right\} \left\{ \log_{\sin x} \cos x \right\}^{- 1} + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right), \text{ find } \frac{dy}{dx} \text{ at }x = \frac{\pi}{4}\] ?
Differentiate \[\left( \log x \right)^x\] ?
Differentiate \[\left( \tan x \right)^{1/x}\] ?
Find \[\frac{dy}{dx}\] \[y = x^{\log x }+ \left( \log x \right)^x\] ?
If \[x^y + y^x = \left( x + y \right)^{x + y} , \text{ find } \frac{dy}{dx}\] ?
If \[y^x + x^y + x^x = a^b\] ,find \[\frac{dy}{dx}\] ?
Find \[\frac{dy}{dx}\],when \[x = a e^\theta \left( \sin \theta - \cos \theta \right), y = a e^\theta \left( \sin \theta + \cos \theta \right)\] ?
\[\text { If }x = \cos t\left( 3 - 2 \cos^2 t \right), y = \sin t\left( 3 - 2 \sin^2 t \right) \text { find the value of } \frac{dy}{dx}\text{ at }t = \frac{\pi}{4}\] ?
Differentiate \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\]\[x \in \left( 0, 1 \right)\] ?
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( \frac{1}{\sqrt{2}}, 1 \right)\] ?
If \[y = \log_a x, \text{ find } \frac{dy}{dx} \] ?
If \[x = 3\sin t - \sin3t, y = 3\cos t - \cos3t \text{ find }\frac{dy}{dx} \text{ at } t = \frac{\pi}{3}\] ?
If \[x^y = e^{x - y} ,\text{ then } \frac{dy}{dx}\] is __________ .
If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] _____________ .
\[\frac{d}{dx} \left\{ \tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right) \right\} \text { equals }\] ______________ .
If \[y = \log \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] __________ .
If y = x3 log x, prove that \[\frac{d^4 y}{d x^4} = \frac{6}{x}\] ?
If y = (sin−1 x)2, then (1 − x2)y2 is equal to
If \[\frac{d}{dx}\left[ x^n - a_1 x^{n - 1} + a_2 x^{n - 2} + . . . + \left( - 1 \right)^n a_n \right] e^x = x^n e^x\] then the value of ar, 0 < r ≤ n, is equal to
If y = xn−1 log x then x2 y2 + (3 − 2n) xy1 is equal to
f(x) = xx has a stationary point at ______.