Advertisements
Advertisements
Question
If \[y = \left\{ \log_{\cos x} \sin x \right\} \left\{ \log_{\sin x} \cos x \right\}^{- 1} + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right), \text{ find } \frac{dy}{dx} \text{ at }x = \frac{\pi}{4}\] ?
Solution
\[\text{ We have, y } = \left[ \log_{\cos x} \sin x \right] \left[ \log_{\sin x} \cos x \right]^{- 1} + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\]
\[ \Rightarrow y = \left[ \log_{\cos x }\sin x \right]\left[ \log_{\cos x }\sin x \right] + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) ..........\left[ \because \log_a b = \left( \log_b a \right)^{- 1} \right]\]
\[ \Rightarrow y = \left[ \frac{\log \sin x}{\log \cos x} \right]^2 + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) ..........\left[ \because \log_a b = \frac{\log b}{\log a} \right]\]
Differentiating with respect to x,
\[\frac{dy}{dx} = \frac{d}{dx} \left[ \frac{\log \sin x}{\log \cos x} \right]^2 + \frac{d}{dx}\left\{ \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \right\}\]
\[ \Rightarrow \frac{dy}{dx} = 2\left[ \frac{\log \sin x}{\log \cos x} \right]\frac{d}{dx}\left( \frac{\log \sin x}{\log \cos x} \right) + \frac{1}{\sqrt{1 - \left( \frac{2x}{1 + x^2} \right)^2}} \times \frac{d}{dx}\left[ \frac{2x}{1 + x^2} \right] \]
\[ \Rightarrow \frac{dy}{dx} = 2\left[ \frac{\log \sin x}{\log \cos x} \right]\left[ \frac{\left( \log \cos x \right)\frac{d}{dx}\left( \log \sin x \right) - \log \sin x\frac{d}{dx}\left( \log \cos x \right)}{\left( \log \cos x \right)^2} \right] + \left[ \frac{\left( 1 + x^2 \right)}{\sqrt{1 + x^4 - 2 x^2}} \right]\left[ \frac{\left( 1 + x^2 \right)\left( 2 \right) - \left( 2x \right)\left( 2x \right)}{\left( 1 + x^2 \right)^2} \right] \]
\[ \Rightarrow \frac{dy}{dx} = 2\left[ \frac{\log \sin x}{\log \cos x} \right]\left[ \frac{\log \cos x \times \frac{1}{\sin x}\frac{d}{dx}\left( \sin x \right) - \log \sin x \times \frac{1}{\cos x}\frac{d}{dx}\left( \cos x \right)}{\left( \log \cos x \right)^2} \right] + \left[ \frac{\left( 1 + x^2 \right)}{\sqrt{1 + x^4 - 2 x^2}} \right]\left[ \frac{\left( 1 + x^2 \right)\left( 2 \right) - \left( 2x \right)\left( 2x \right)}{\left( 1 + x^2 \right)^2} \right] \]
\[ \Rightarrow \frac{dy}{dx} = 2\left[ \frac{\log \sin x}{\log \cos x} \right]\left[ \frac{\log \cos x \times \left( \frac{\cos x}{\sin x} \right) + \log \sin x \times \left( \frac{\sin x}{\cos x} \right)}{\left( \log \cos x \right)^2} \right] + \left[ \frac{1 + x^2}{\sqrt{\left( 1 - x^2 \right)^2}} \right]\left[ \frac{2 + 2 x^2 - 4 x^2}{\left( 1 + x^2 \right)^2} \right]\]
\[ \Rightarrow \frac{dy}{dx} = 2\frac{\log \sin x}{\left( \log \cos x \right)^3}\left( \cot x \log \cos x + \tan x \log \sin x \right) + \frac{2}{1 + x^2}\]
\[\text{ put x } = \frac{\pi}{4}\]
\[ \Rightarrow \frac{dy}{dx} = 2\left\{ \frac{\log \sin\frac{\pi}{4}}{\left( \log \cos\frac{\pi}{4} \right)^3} \right\} \left( \cot\frac{\pi}{4} \log \cos\frac{\pi}{4} + \tan\frac{\pi}{4} \log \sin\frac{\pi}{4} \right) + 2\left\{ \frac{1}{1 + \left( \frac{\pi}{4} \right)^2} \right\}\]
\[ \Rightarrow \frac{dy}{dx} = 2\left\{ \frac{1}{\left( \log\frac{1}{\sqrt{2}} \right)^2} \right\}\left( 1 \times \log\frac{1}{\sqrt{2}} + 1 \times \log\frac{1}{\sqrt{2}} \right) + 2\left( \frac{16}{16 + \pi^2} \right) \]
\[ \Rightarrow \frac{dy}{dx} = 2 \times \frac{2\log\left( \frac{1}{\sqrt{2}} \right)}{\left\{ \log\left( \frac{1}{\sqrt{2}} \right) \right\}^2} + \frac{32}{16 + \pi^2}\]
\[ \Rightarrow \frac{dy}{dx} = 4\frac{1}{\log\left( \frac{1}{\sqrt{2}} \right)} + \frac{32}{16 + \pi^2}\]
\[ \Rightarrow \frac{dy}{dx} = 4\frac{1}{- \frac{1}{2}\log2} + \frac{32}{16 + \pi^2}\]
\[ \Rightarrow \frac{dy}{dx} = - \frac{8}{\log2} + \frac{32}{16 + \pi^2}\]
\[So, \left( \frac{dy}{dx} \right)_{x = \frac{\pi}{4}} = 8\left[ \frac{4}{16 + \pi^2} - \frac{1}{\log2} \right]\]
APPEARS IN
RELATED QUESTIONS
If the function f(x)=2x3−9mx2+12m2x+1, where m>0 attains its maximum and minimum at p and q respectively such that p2=q, then find the value of m.
Differentiate the following functions from first principles eax+b.
Differentiate the following functions from first principles log cos x ?
Differentiate \[\frac{3 x^2 \sin x}{\sqrt{7 - x^2}}\] ?
Differentiate \[e^{ax} \sec x \tan 2x\] ?
Differentiate \[\sin^{- 1} \left( 1 - 2 x^2 \right), 0 < x < 1\] ?
Differentiate \[\left( 1 + \cos x \right)^x\] ?
Differentiate \[\left( \sin x \right)^{\cos x}\] ?
Find \[\frac{dy}{dx}\] \[y = \frac{e^{ax} \cdot \sec x \cdot \log x}{\sqrt{1 - 2x}}\] ?
Find \[\frac{dy}{dx}\] \[y = e^{3x} \sin 4x \cdot 2^x\] ?
Find \[\frac{dy}{dx}\] \[y = \sin x \sin 2x \sin 3x \sin 4x\] ?
Find \[\frac{dy}{dx}\] \[y = \left( \sin x \right)^{\cos x} + \left( \cos x \right)^{\sin x}\] ?
Find \[\frac{dy}{dx}\]
\[y = x^x + x^{1/x}\] ?
If \[x^y \cdot y^x = 1\] , prove that \[\frac{dy}{dx} = - \frac{y \left( y + x \log y \right)}{x \left( y \log x + x \right)}\] ?
If \[y^x = e^{y - x}\] ,prove that \[\frac{dy}{dx} = \frac{\left( 1 + \log y \right)^2}{\log y}\] ?
If \[\left( \cos x \right)^y = \left( \tan y \right)^x\] , prove that \[\frac{dy}{dx} = \frac{\log \tan y + y \tan x}{ \log \cos x - x \sec y \ cosec\ y }\] ?
If \[y = \log\frac{x^2 + x + 1}{x^2 - x + 1} + \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{\sqrt{3} x}{1 - x^2} \right), \text{ find } \frac{dy}{dx} .\] ?
If \[xy = e^{x - y} , \text{ find } \frac{dy}{dx}\] ?
If \[y = \sqrt{x + \sqrt{x + \sqrt{x + . . . to \infty ,}}}\] prove that \[\frac{dy}{dx} = \frac{1}{2 y - 1}\] ?
\[y = \left( \sin x \right)^{\left( \sin x \right)^{\left( \sin x \right)^{. . . \infty}}} \],prove that \[\frac{y^2 \cot x}{\left( 1 - y \log \sin x \right)}\] ?
If \[y = \left( \cos x \right)^{\left( \cos x \right)^{\left( \cos x \right) . . . \infty}}\],prove that \[\frac{dy}{dx} = - \frac{y^2 \tan x}{\left( 1 - y \log \cos x \right)}\]?
Find \[\frac{dy}{dx}\] , when \[x = \frac{1 - t^2}{1 + t^2} \text{ and y } = \frac{2 t}{1 + t^2}\] ?
If \[x = 2 \cos \theta - \cos 2 \theta \text{ and y} = 2 \sin \theta - \sin 2 \theta\], prove that \[\frac{dy}{dx} = \tan \left( \frac{3 \theta}{2} \right)\] ?
If \[x = \frac{\sin^3 t}{\sqrt{\cos 2 t}}, y = \frac{\cos^3 t}{\sqrt{\cos t 2 t}}\] , find\[\frac{dy}{dx}\] ?
Differentiate \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right)\] with respect to \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right), \text { if } - \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?
If \[f\left( 1 \right) = 4, f'\left( 1 \right) = 2\] find the value of the derivative of \[\log \left( f\left( e^x \right) \right)\] w.r. to x at the point x = 0 ?
If \[f\left( 0 \right) = f\left( 1 \right) = 0, f'\left( 1 \right) = 2 \text { and y } = f \left( e^x \right) e^{f \left( x \right)}\] write the value of \[\frac{dy}{dx} \text{ at x } = 0\] ?
If \[y = \log_a x, \text{ find } \frac{dy}{dx} \] ?
If \[x = 3\sin t - \sin3t, y = 3\cos t - \cos3t \text{ find }\frac{dy}{dx} \text{ at } t = \frac{\pi}{3}\] ?
If \[x = a \cos^3 \theta, y = a \sin^3 \theta, \text { then } \sqrt{1 + \left( \frac{dy}{dx} \right)^2} =\] ____________ .
If \[3 \sin \left( xy \right) + 4 \cos \left( xy \right) = 5, \text { then } \frac{dy}{dx} =\] _____________ .
Find the second order derivatives of the following function log (log x) ?
If x = a sec θ, y = b tan θ, prove that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?
\[\text { If x } = a\left( \cos t + t \sin t \right) \text { and y} = a\left( \sin t - t \cos t \right),\text { then find the value of } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?
If x = t2 and y = t3, find \[\frac{d^2 y}{d x^2}\] ?
If x = at2, y = 2 at, then \[\frac{d^2 y}{d x^2} =\]
If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =
If y2 = ax2 + bx + c, then \[y^3 \frac{d^2 y}{d x^2}\] is
If x = sin t and y = sin pt, prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] .