English

Find D Y D X Y = X X + X 1 / X ? - Mathematics

Advertisements
Advertisements

Question

Find \[\frac{dy}{dx}\]

\[y = x^x + x^{1/x}\] ?

Sum

Solution

\[\text{ We have, y } = x^x + x^\frac{1}{x} \]

\[ \Rightarrow y = e^{\log x^x }+ e^{\log x^{\frac{1}{x}} }\]

\[ \Rightarrow y = e^{x \log x} + e^\left( \frac{1}{x}\log x \right)\]

Differentiating with respect to using chain rule,

\[\frac{dy}{dx} = \frac{d}{dx}\left( e^{x \log x} \right) + \frac{d}{dx}\left( e^{\frac{1}{x}\log x }\right)\]

\[ = e^{x \log x} \frac{d}{dx}\left( x \log x \right) + e^{\frac{1}{x}\log x} \frac{d}{dx}\left( \frac{1}{x}\log x \right)\]

\[ = e^{\log x^x} \left[ x\frac{d}{dx}\left( \log x \right) + \log x\frac{d}{dx}\left( x \right) \right] + e^{ \log x^{\frac{1}{x}}} \left[ \frac{1}{x}\frac{d}{dx}\left( \log x \right) + \log x\frac{d}{dx}\left( \frac{1}{x} \right) \right] \]

\[ = \left( x \right)^x \left[ x\left( \frac{1}{x} \right) + \log x\left( 1 \right) \right] + x^\frac{1}{x} \left[ \left( \frac{1}{x} \right)\left( \frac{1}{x} \right) + \log x\left( - \frac{1}{x^2} \right) \right]\]

\[ = \left( x \right)^x \left[ 1 + \log x \right] + x^\frac{1}{x} \left( \frac{1}{x^2} - \frac{1}{x^2}\log x \right)\]

\[ = x^x \left[ 1 + \log x \right] + x^\frac{1}{x} \left( \frac{1 - \log x}{x^2} \right)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Differentiation - Exercise 11.05 [Page 89]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 11 Differentiation
Exercise 11.05 | Q 31 | Page 89

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

​Differentiate the following function from first principles \[e^\sqrt{\cot x}\] .


Differentiate tan (x° + 45°) ?


Differentiate \[e^{\sin} \sqrt{x}\] ?


Differentiate log7 (2x − 3) ?


Differentiate \[\sqrt{\frac{1 - x^2}{1 + x^2}}\] ?


Differentiate \[\frac{2^x \cos x}{\left( x^2 + 3 \right)^2}\] ?


Differentiate \[x \sin 2x + 5^x + k^k + \left( \tan^2 x \right)^3\] ?


Differentiate \[3 e^{- 3x} \log \left( 1 + x \right)\] ?


Prove that \[\frac{d}{dx} \left\{ \frac{x}{2}\sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{- 1} \frac{x}{a} \right\} = \sqrt{a^2 - x^2}\] ?


Differentiate \[\tan^{- 1} \left( \frac{a + x}{1 - ax} \right)\] ?


If \[y = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), x > 0\] ,prove that \[\frac{dy}{dx} = \frac{4}{1 + x^2} \] ? 


If \[y = \sin^{- 1} \left( 6x\sqrt{1 - 9 x^2} \right), - \frac{1}{3\sqrt{2}} < x < \frac{1}{3\sqrt{2}}\] \[\frac{dy}{dx} \] ?


If \[y \sqrt{1 - x^2} + x \sqrt{1 - y^2} = 1\] ,prove that \[\frac{dy}{dx} = - \sqrt{\frac{1 - y^2}{1 - x^2}}\] ?


If \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?


If \[\sin^2 y + \cos xy = k,\] find  \[\frac{dy}{dx}\] at \[x = 1 , \] \[y = \frac{\pi}{4} .\] 


Differentiate \[\left( \sin^{- 1} x \right)^x\] ?


If \[x^x + y^x = 1\], prove that \[\frac{dy}{dx} = - \left\{ \frac{x^x \left( 1 + \log x \right) + y^x \cdot \log y}{x \cdot y^\left( x - 1 \right)} \right\}\] ?


If \[y^x = e^{y - x}\] ,prove that \[\frac{dy}{dx} = \frac{\left( 1 + \log y \right)^2}{\log y}\] ?


If \[\left( \sin x \right)^y = \left( \cos y \right)^x ,\], prove that \[\frac{dy}{dx} = \frac{\log \cos y - y cot x}{\log \sin x + x \tan y}\] ?


\[\text{ If }\cos y = x\cos\left( a + y \right),\text{  where } \cos a \neq \pm 1, \text{ prove that } \frac{dy}{dx} = \frac{\cos^2 \left( a + y \right)}{\sin a}\] ?

If \[\frac{dy}{dx}\] when \[x = a \cos \theta \text{ and } y = b \sin \theta\] ?


Find \[\frac{dy}{dx}\] ,When \[x = a \left( 1 - \cos \theta \right) \text{ and } y = a \left( \theta + \sin \theta \right) \text{ at } \theta  = \frac{\pi}{2}\] ?


If \[x = e^{\cos 2 t} \text{ and y }= e^{\sin 2 t} ,\] prove that \[\frac{dy}{dx} = - \frac{y \log x}{x \log y}\] ?


Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( - \frac{1}{2}, - \frac{1}{2 \sqrt{2}} \right)\] ?


Differentiate \[\left( \cos x \right)^{\sin x }\] with respect to \[\left( \sin x \right)^{\cos x }\]?


Differentiate \[\tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right)\] with  respect to \[\sec^{- 1} x\] ?


Let g (x) be the inverse of an invertible function f (x) which is derivable at x = 3. If f (3) = 9 and `f' (3) = 9`, write the value of `g' (9)`.


Given  \[f\left( x \right) = 4 x^8 , \text { then }\] _________________ .


If \[\sin \left( x + y \right) = \log \left( x + y \right), \text { then } \frac{dy}{dx} =\] ___________ .


If \[f\left( x \right) = \left| x^2 - 9x + 20 \right|\]  then `f' (x)` is equal to ____________ .


If \[y = \sqrt{\sin x + y}, \text { then }\frac{dy}{dx} \text { equals }\] ______________ .


Find the second order derivatives of the following function tan−1 x ?


If x = a (1 − cos3 θ), y = a sin3 θ, prove that \[\frac{d^2 y}{d x^2} = \frac{32}{27a} \text { at } \theta = \frac{\pi}{6}\] ?


If log y = tan−1 x, show that (1 + x2)y2 + (2x − 1) y1 = 0 ?


If y = 3 e2x + 2 e3x, prove that  \[\frac{d^2 y}{d x^2} - 5\frac{dy}{dx} + 6y = 0\] ?


\[ \text { If x } = a \sin t \text { and y } = a\left( \cos t + \log \tan\frac{t}{2} \right), \text { find } \frac{d^2 y}{d x^2} \] ?


\[\text{ If x } = a\left( \cos t + \log \tan\frac{t}{2} \right) \text { and y } = a\left( \sin t \right), \text { evaluate } \frac{d^2 y}{d x^2} \text { at t } = \frac{\pi}{3} \] ?


If f(x) = (cos x + i sin x) (cos 2x + i sin 2x) (cos 3x + i sin 3x) ...... (cos nx + i sin nx) and f(1) = 1, then f'' (1) is equal to

 


If y = xn−1 log x then x2 y2 + (3 − 2n) xy1 is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×