Advertisements
Advertisements
Question
Differentiate \[\left( \cos x \right)^{\sin x }\] with respect to \[\left( \sin x \right)^{\cos x }\]?
Solution
\[\text { Let, u } = \left( \cos x \right)^{\sin x} \]
Taking log on both sides,
\[\log u = \log \left( \cos x \right)^{\sin x } \]
\[ \Rightarrow \log u = \sin x \log\left( \cos x \right)\]
Differentiating it with respect to x using chain rule,
\[\frac{1}{u}\frac{du}{dx} = \sin x\frac{d}{dx}\left( \log \cos x \right) + \log \cos x\frac{d}{dx}\left( \sin x \right) \left[ \text{ using product rule } \right]\]
\[ \Rightarrow \frac{1}{u}\frac{du}{dx} = \sin x\left( \frac{1}{\cos x} \right)\frac{d}{dx}\left( \cos x \right) + \log \cos x\left( \cos x \right)\]
\[ \Rightarrow \frac{du}{dx} = u\left[ \left( \tan x \right) \times \left( - \sin x \right) + \log \log x\left( \cos x \right) \right]\]
\[ \Rightarrow \frac{du}{dx} = \left( \cos x \right)^{ \sin x } \left[ \cos x \log\cos x - \sin x \tan x \right] . . . \left( i \right)\]
\[\text { Let, v }= \left( \sin x \right)^{\cos x }\]
Taking log on both sides,
\[\log v = \log \left( \sin x \right)^{\cos x} \]
\[ \Rightarrow \log v = \cos x \log\left( \sin x \right)\]
Differentiating it with respect to x using chain rule,
\[\frac{1}{v}\frac{dv}{dx} = \cos x\frac{d}{dx}\left( \log\sin x \right) + \log\sin x\frac{d}{dx}\left( \cos x \right) ..........\left[ \text { using product rule } \right]\]
\[ \Rightarrow \frac{1}{v}\frac{dv}{dx} = \cos x\left( \frac{1}{\sin x} \right)\frac{d}{dx}\left( \sin x \right) + \log\sin x\left( - \sin x \right)\]
\[ \Rightarrow \frac{dv}{dx} = v\left[ \cot x\left( \cos x \right) - \sin x \log\sin x \right]\]
\[ \Rightarrow \frac{dv}{dx} = \left( \sin x \right)^{\cos x } \left[ \cot x\left( \cos x \right) - \sin x \log\sin x \right]\]
\[\text { dividing equation }\left( i \right) by \left( ii \right), \]
\[ \therefore \frac{du}{dv} = \frac{\left( \cos x \right)^{\sin x } \left[ \cos x \log\cos x - \sin x \tan x \right]}{\left( \sin x \right)^{\cos x } \left[ \cot x\left( \cos x \right) - \sin x \log\sin x \right]}\]
APPEARS IN
RELATED QUESTIONS
Differentiate the following functions from first principles eax+b.
Differentiate the following functions from first principles log cosec x ?
Differentiate \[\log \sqrt{\frac{1 - \cos x}{1 + \cos x}}\] ?
Differentiate \[\sin \left( 2 \sin^{- 1} x \right)\] ?
Differentiate \[\sqrt{\tan^{- 1} \left( \frac{x}{2} \right)}\] ?
If \[y = e^x \cos x\] ,prove that \[\frac{dy}{dx} = \sqrt{2} e^x \cdot \cos \left( x + \frac{\pi}{4} \right)\] ?
Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] ?
Differentiate \[\sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), x \in R\] ?
If \[y = \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), 0 < x < 1,\] prove that \[\frac{dy}{dx} = \frac{4}{1 + x^2}\] ?
If \[y = \cot^{- 1} \left\{ \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} \right\}\], show that \[\frac{dy}{dx}\] is independent of x. ?
If \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, - \frac{1}{2} < x < 0, \text{ find } \frac{dy}{dx} \] ?
If \[y = \tan^{- 1} \left( \frac{\sqrt{1 + x} - \sqrt{1 - x}}{\sqrt{1 + x} + \sqrt{1 - x}} \right), \text{find } \frac{dy}{dx}\] ?
Find \[\frac{dy}{dx}\] in the following case \[xy = c^2\] ?
If \[x \sqrt{1 + y} + y \sqrt{1 + x} = 0\] , prove that \[\left( 1 + x \right)^2 \frac{dy}{dx} + 1 = 0\] ?
Find \[\frac{dy}{dx}\] \[y = e^x + {10}^x + x^x\] ?
If \[x^{16} y^9 = \left( x^2 + y \right)^{17}\] ,prove that \[x\frac{dy}{dx} = 2 y\] ?
If \[y^x = e^{y - x}\] ,prove that \[\frac{dy}{dx} = \frac{\left( 1 + \log y \right)^2}{\log y}\] ?
If \[\left( \sin x \right)^y = \left( \cos y \right)^x ,\], prove that \[\frac{dy}{dx} = \frac{\log \cos y - y cot x}{\log \sin x + x \tan y}\] ?
If \[y = \left( \sin x - \cos x \right)^{\sin x - \cos x} , \frac{\pi}{4} < x < \frac{3\pi}{4}, \text{ find} \frac{dy}{dx}\] ?
Find \[\frac{dy}{dx}\] , when \[x = b \sin^2 \theta \text{ and } y = a \cos^2 \theta\] ?
Find \[\frac{dy}{dx}\], when \[x = a \left( \cos \theta + \theta \sin \theta \right) \text{ and }y = a \left( \sin \theta - \theta \cos \theta \right)\] ?
If \[x = 2 \cos \theta - \cos 2 \theta \text{ and y} = 2 \sin \theta - \sin 2 \theta\], prove that \[\frac{dy}{dx} = \tan \left( \frac{3 \theta}{2} \right)\] ?
Differentiate \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\] \[x \in \left( - 1, 0 \right)\] ?
If \[y = \log \sqrt{\tan x}, \text{ write } \frac{dy}{dx} \] ?
If f (x) is an even function, then write whether `f' (x)` is even or odd ?
If \[x^y = e^{x - y} ,\text{ then } \frac{dy}{dx}\] is __________ .
If \[3 \sin \left( xy \right) + 4 \cos \left( xy \right) = 5, \text { then } \frac{dy}{dx} =\] _____________ .
If \[f\left( x \right) = \left| x - 3 \right| \text { and }g\left( x \right) = fof \left( x \right)\] is equal to __________ .
If \[y = \log \sqrt{\tan x}\] then the value of \[\frac{dy}{dx}\text { at }x = \frac{\pi}{4}\] is given by __________ .
If y = cos−1 x, find \[\frac{d^2 y}{d x^2}\] in terms of y alone ?
If y = a xn + 1 + bx−n and \[x^2 \frac{d^2 y}{d x^2} = \lambda y\] then write the value of λ ?
If y = etan x, then (cos2 x)y2 =
If x = f(t) cos t − f' (t) sin t and y = f(t) sin t + f'(t) cos t, then\[\left( \frac{dx}{dt} \right)^2 + \left( \frac{dy}{dt} \right)^2 =\]
If xy − loge y = 1 satisfies the equation \[x\left( y y_2 + y_1^2 \right) - y_2 + \lambda y y_1 = 0\]
If x = sin t and y = sin pt, prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] .
Find the minimum value of (ax + by), where xy = c2.
If x = a (1 + cos θ), y = a(θ + sin θ), prove that \[\frac{d^2 y}{d x^2} = \frac{- 1}{a}at \theta = \frac{\pi}{2}\]