English

If X √ 1 + Y + Y √ 1 + X = 0 , Prove that ( 1 + X ) 2 D Y D X + 1 = 0 ? - Mathematics

Advertisements
Advertisements

Question

If \[x \sqrt{1 + y} + y \sqrt{1 + x} = 0\] , prove that \[\left( 1 + x \right)^2 \frac{dy}{dx} + 1 = 0\]  ?

Solution

\[\text { We have }, x\sqrt{1 + y} + y\sqrt{1 + x} = 0\]

\[ \Rightarrow x\sqrt{1 + y} = - y\sqrt{1 + x}\]

\[\text{ Squaring both sides, we get } , \]

\[ \Rightarrow \left( x\sqrt{1 + y} \right)^2 = \left( - y\sqrt{1 + x} \right)^2 \]

\[ \Rightarrow x^2 \left( 1 + y \right) = y^2 \left( 1 + x \right)\]

\[ \Rightarrow x^2 + x^2 y = y^2 + y^2 x\]

\[ \Rightarrow x^2 - y^2 = y^2 x - x^2 y\]

\[ \Rightarrow \left( x - y \right)\left( x + y \right) = xy\left( y - x \right)\]

\[ \Rightarrow \left( x + y \right) = - xy\]

\[ \Rightarrow y + xy = - x\]

\[ \Rightarrow y\left( 1 + x \right) = - x\]

\[ \Rightarrow y = \frac{- x}{\left( 1 + x \right)}\]

Differentiating with respect to x, we get,

\[\Rightarrow \frac{d y}{d x} = \left[ \frac{- \left( 1 + x \right)\frac{d}{dx}\left( x \right) - \left( - x \right)\frac{d}{dx}\left( x + 1 \right)}{\left( 1 + x \right)^2} \right]\]

\[ \Rightarrow \frac{d y}{d x} = \left[ \frac{- \left( 1 + x \right)\left( 1 \right) + x\left( 1 \right)}{\left( 1 + x \right)^2} \right]\]

\[ \Rightarrow \frac{d y}{d x} = \left[ \frac{- 1 - x + x}{\left( 1 + x \right)^2} \right]\]

\[ \Rightarrow \frac{d y}{d x} = \frac{- 1}{\left( 1 + x \right)^2}\]

\[ \Rightarrow \left( 1 + x \right)^2 \frac{d y}{d x} = - 1\]

\[ \Rightarrow \left( 1 + x \right)^2 \frac{d y}{d x} + 1 = 0\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Differentiation - Exercise 11.04 [Page 75]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 11 Differentiation
Exercise 11.04 | Q 16 | Page 75

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

 

If y = xx, prove that `(d^2y)/(dx^2)−1/y(dy/dx)^2−y/x=0.`

 

​Differentiate the following function from first principles \[e^\sqrt{\cot x}\] .


Differentiate \[3^{x \log x}\] ?


Differentiate \[e^\sqrt{\cot x}\] ?


Differentiate \[\tan \left( e^{\sin x }\right)\] ?


Differentiate \[\frac{x^2 + 2}{\sqrt{\cos x}}\] ?


Differentiate \[\tan^{- 1} \left( \frac{a + b \tan x}{b - a \tan x} \right)\] ?


If  \[y = se c^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right), x > 0 . \text{ Find} \frac{dy}{dx}\] ?

 


Find  \[\frac{dy}{dx}\] in the following case \[\left( x + y \right)^2 = 2axy\] ?

 


If \[e^x + e^y = e^{x + y} , \text{ prove that } \frac{dy}{dx} = - \frac{e^x \left( e^y - 1 \right)}{e^y \left( e^x - 1 \right)} or \frac{dy}{dx} + e^{y - x} = 0\] ?


Differentiate \[x^{1/x}\]  with respect to x.


Differentiate \[\left( \log x \right)^{\cos x}\] ?


Differentiate \[{10}^{ \log \sin x }\] ?


Find  \[\frac{dy}{dx}\] \[y = e^x + {10}^x + x^x\] ?

 


Find  \[\frac{dy}{dx}\]  \[y = \frac{e^{ax} \cdot \sec x \cdot \log x}{\sqrt{1 - 2x}}\] ?

 


Find  \[\frac{dy}{dx}\]  \[y = \left( \sin x \right)^{\cos x} + \left( \cos x \right)^{\sin x}\] ?

 


If \[y = x \sin \left( a + y \right)\] , prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?

 


Find the derivative of the function f (x) given by  \[f\left( x \right) = \left( 1 + x \right) \left( 1 + x^2 \right) \left( 1 + x^4 \right) \left( 1 + x^8 \right)\] and hence find `f' (1)` ?

 


\[\text{If y} = 1 + \frac{\alpha}{\left( \frac{1}{x} - \alpha \right)} + \frac{{\beta}/{x}}{\left( \frac{1}{x} - \alpha \right)\left( \frac{1}{x} - \beta \right)} + \frac{{\gamma}/{x^2}}{\left( \frac{1}{x} - \alpha \right)\left( \frac{1}{x} - \beta \right)\left( \frac{1}{x} - \gamma \right)}, \text{ find } \frac{dy}{dx}\] is:

If \[x = \sin^{- 1} \left( \frac{2 t}{1 + t^2} \right) \text{ and y } = \tan^{- 1} \left( \frac{2 t}{1 - t^2} \right), - 1 < t < 1\] porve that \[\frac{dy}{dx} = 1\] ?

 


If \[x = 10 \left( t - \sin t \right), y = 12 \left( 1 - \cos t \right), \text { find } \frac{dy}{dx} .\] ?

 


\[\text { If }x = \cos t\left( 3 - 2 \cos^2 t \right), y = \sin t\left( 3 - 2 \sin^2 t \right) \text { find the value of } \frac{dy}{dx}\text{ at }t = \frac{\pi}{4}\] ?


Differentiate \[\left( \cos x \right)^{\sin x }\] with respect to \[\left( \sin x \right)^{\cos x }\]?


Differentiate \[\tan^{- 1} \left( \frac{2x}{1 - x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text {  if }0 < x < 1\] ?


Differentiate \[\sin^{- 1} \left( 2 ax \sqrt{1 - a^2 x^2} \right)\] with respect to \[\sqrt{1 - a^2 x^2}, \text{ if }-\frac{1}{\sqrt{2}} < ax < \frac{1}{\sqrt{2}}\] ?


If \[f'\left( 1 \right) = 2 \text { and y } = f \left( \log_e x \right), \text { find} \frac{dy}{dx} \text { at }x = e\] ?


If \[x = 3\sin t - \sin3t, y = 3\cos t - \cos3t \text{ find }\frac{dy}{dx} \text{ at } t = \frac{\pi}{3}\] ?


If \[y = \left( 1 + \frac{1}{x} \right)^x , \text{ then} \frac{dy}{dx} =\] ____________ .


If  \[\sqrt{1 - x^6} + \sqrt{1 - y^6} = a^3 \left( x^3 - y^3 \right)\] then \[\frac{dy}{dx}\] is equal to ____________ .


If \[y = \log \sqrt{\tan x}\] then the value of \[\frac{dy}{dx}\text { at }x = \frac{\pi}{4}\] is given by __________ .


If \[y = \log \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] __________ .


If \[y = \sqrt{\sin x + y}, \text { then }\frac{dy}{dx} \text { equals }\] ______________ .


Find the second order derivatives of the following function  x3 + tan x ?


If y = cot x show that \[\frac{d^2 y}{d x^2} + 2y\frac{dy}{dx} = 0\] ?


If y = ae2x + be−x, show that, \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\] ?


\[\text { If x } = a\left( \cos2t + 2t \sin2t \right)\text {  and y } = a\left( \sin2t - 2t \cos2t \right), \text { then find } \frac{d^2 y}{d x^2} \] ?


If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =


If \[y = \frac{ax + b}{x^2 + c}\] then (2xy1 + y)y3 = 

 


If \[y^\frac{1}{n} + y^{- \frac{1}{n}} = 2x, \text { then find } \left( x^2 - 1 \right) y_2 + x y_1 =\] ?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×