English

Differentiate Tan − 1 ( 2 X 1 − X 2 ) with Respect to Cos − 1 ( 1 − X 2 1 + X 2 ) , If 0 < X < 1 ? - Mathematics

Advertisements
Advertisements

Question

Differentiate \[\tan^{- 1} \left( \frac{2x}{1 - x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text {  if }0 < x < 1\] ?

Sum

Solution

\[\text { Let, u } = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right)\]

\[\text { Put x } = \tan\theta\]

\[ \Rightarrow u = \tan^{- 1} \left( \frac{2\tan\theta}{1 - \tan^2 \theta} \right)\]

\[ \Rightarrow u = \tan^{- 1} \left( \tan2\theta \right) . . . \left( i \right)\]

\[\text { let, v} = \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right)\]

\[ \Rightarrow v = \cos^{- 1} \left( \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} \right) \]

\[ \Rightarrow v = \cos^{- 1} \left( \cos2\theta \right) . . . \left( ii \right)\]

\[\text { Here, } 0 < x < 1\]

\[ \Rightarrow 0 < \tan\theta < 1\]

\[ \Rightarrow 0 < \theta < \frac{\pi}{4}\]

\[\text { So, from equation } \left( i \right), \]

\[u = 2\theta \left[ \text { Since }, \tan^{- 1} \left( \tan\theta \right) = \theta,\text { if } \theta \in \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \right]\]

\[ \Rightarrow u = 2 \tan^{- 1} x \left[ \text { Since,} x = \tan\theta \right]\]

differentiating it with respect to x,

\[\frac{du}{dx} = \frac{2}{1 + x^2} . . . \left( iii \right)\]

\[\text { From equation } \left( ii \right), \]

\[v = \theta .........\left[ \text { Since }, \cos^{- 1} \left( \cos\theta \right) = \theta, \text{ if }\theta \in \left[ 0, \pi \right] \right]\]

\[ \Rightarrow v = 2 \tan^{- 1} x ......\left[ \text { Since, } x = \tan\theta \right]\]

Differentiating it with respect to x,

\[\frac{dv}{dx} = \frac{2}{1 + x^2} . . . \left( iv \right)\]

\[\text { Dividing equation } \left( iii \right) \text { by }\left( iv \right), \]

\[\frac{\frac{du}{dx}}{\frac{dv}{dx}} = \frac{2}{1 + x^2} \times \frac{1 + x^2}{2}\]

\[ \therefore \frac{du}{dv} = 1\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Differentiation - Exercise 11.08 [Page 113]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 11 Differentiation
Exercise 11.08 | Q 12 | Page 113

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Differentiate \[\log \left( \frac{\sin x}{1 + \cos x} \right)\] ?


Differentiate \[\log \sqrt{\frac{1 - \cos x}{1 + \cos x}}\] ?


Differentiate \[\sin^{- 1} \left( \frac{x}{\sqrt{x^2 + a^2}} \right)\] ?


\[\log\left\{ \cot\left( \frac{\pi}{4} + \frac{x}{2} \right) \right\}\] ?


If  \[y = \left( x - 1 \right) \log \left( x - 1 \right) - \left( x + 1 \right) \log \left( x + 1 \right)\] , prove that \[\frac{dy}{dc} = \log \left( \frac{x - 1}{1 + x} \right)\] ?


If \[y = e^x \cos x\] ,prove that \[\frac{dy}{dx} = \sqrt{2} e^x \cdot \cos \left( x + \frac{\pi}{4} \right)\] ?


Differentiate \[\cos^{- 1} \left\{ 2x\sqrt{1 - x^2} \right\}, \frac{1}{\sqrt{2}} < x < 1\] ?


Differentiate \[\cos^{- 1} \left\{ \frac{\cos x + \sin x}{\sqrt{2}} \right\}, - \frac{\pi}{4} < x < \frac{\pi}{4}\] ?


Differentiate \[\tan^{- 1} \left( \frac{a + b \tan x}{b - a \tan x} \right)\] ?


Differentiate \[\tan^{- 1} \left( \frac{x}{1 + 6 x^2} \right)\] ?


Differentiate \[\tan^{- 1} \left\{ \frac{x^{1/3} + a^{1/3}}{1 - \left( a x \right)^{1/3}} \right\}\] ?


If \[x \sqrt{1 + y} + y \sqrt{1 + x} = 0\] , prove that \[\left( 1 + x \right)^2 \frac{dy}{dx} + 1 = 0\]  ?


If \[\tan^{- 1} \left( \frac{x^2 - y^2}{x^2 + y^2} \right) = a\] Prove that  \[\frac{dy}{dx} = \frac{x}{y}\frac{\left( 1 - \tan a \right)}{\left( 1 + \tan a \right)}\] ?


If \[xy \log \left( x + y \right) = 1\] ,Prove that \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?


If  \[\tan \left( x + y \right) + \tan \left( x - y \right) = 1, \text{ find}  \frac{dy}{dx}\] ?


Differentiate \[x^{1/x}\]  with respect to x.


Differentiate \[x^{\sin^{- 1} x}\]  ?


Differentiate \[x^{\tan^{- 1} x }\]  ?


If \[x^{16} y^9 = \left( x^2 + y \right)^{17}\] ,prove that \[x\frac{dy}{dx} = 2 y\] ?


If \[e^x + e^y = e^{x + y}\] , prove that

\[\frac{dy}{dx} + e^{y - x} = 0\] ?


If \[y = x \sin \left( a + y \right)\] , prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?

 


If \[y = \sqrt{\cos x + \sqrt{\cos x + \sqrt{\cos x + . . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sin x}{1 - 2 y}\] ?


Find \[\frac{dy}{dx}\],when \[x = a e^\theta \left( \sin \theta - \cos \theta \right), y = a e^\theta \left( \sin \theta + \cos \theta \right)\] ?


Find \[\frac{dy}{dx}\] ,When \[x = e^\theta \left( \theta + \frac{1}{\theta} \right) \text{ and } y = e^{- \theta} \left( \theta - \frac{1}{\theta} \right)\] ?


If \[x = e^{\cos 2 t} \text{ and y }= e^{\sin 2 t} ,\] prove that \[\frac{dy}{dx} = - \frac{y \log x}{x \log y}\] ?


Differentiate  \[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cos^{- 1} x, \text { if}\] \[x \in \left( - 1, 0 \right)\] ?


Let g (x) be the inverse of an invertible function f (x) which is derivable at x = 3. If f (3) = 9 and `f' (3) = 9`, write the value of `g' (9)`.


If \[\left| x \right| < 1 \text{ and y} = 1 + x + x^2 + . . \]  to ∞, then find the value of  \[\frac{dy}{dx}\] ?


If \[x = a \cos^3 \theta, y = a \sin^3 \theta, \text { then } \sqrt{1 + \left( \frac{dy}{dx} \right)^2} =\] ____________ .


If y = 2 sin x + 3 cos x, show that \[\frac{d^2 y}{d x^2} + y = 0\] ?


If y = ex cos x, prove that \[\frac{d^2 y}{d x^2} = 2 e^x \cos \left( x + \frac{\pi}{2} \right)\] ?


If \[y = e^{\tan^{- 1} x}\] prove that (1 + x2)y2 + (2x − 1)y1 = 0 ?


If y = 500 e7x + 600 e−7x, show that \[\frac{d^2 y}{d x^2} = 49y\] ?


\[\text { If x } = a \sin t - b \cos t, y = a \cos t + b \sin t, \text { prove that } \frac{d^2 y}{d x^2} = - \frac{x^2 + y^2}{y^3} \] ?


If y = sin (m sin−1 x), then (1 − x2) y2 − xy1 is equal to


If y = xn−1 log x then x2 y2 + (3 − 2n) xy1 is equal to


If xy = e(x – y), then show that `dy/dx = (y(x-1))/(x(y+1)) .`


Differentiate \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right) w . r . t . \sin^{- 1} \frac{2x}{1 + x^2},\]tan-11+x2-1x w.r.t. sin-12x1+x2, if x ∈ (–1, 1) .


\[\text { If } y = \left( x + \sqrt{1 + x^2} \right)^n , \text { then show that }\]

\[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = n^2 y .\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×